
royalsocietypublishing.org/journal/rsob
Review
Cite this article: Kostygov AY, Karnkowska A,
Votýpka J, Tashyreva D, Maciszewski K,

Yurchenko V, Lukeš J. 2021 Euglenozoa:
taxonomy, diversity and ecology, symbioses

and viruses. Open Biol. 11: 200407.
https://doi.org/10.1098/rsob.200407
Received: 19 December 2020

Accepted: 8 February 2021
Subject Area:
cellular biology/microbiology

Keywords:
Euglenida, Kinetoplastida, Diplonemida,

microbial eukaryotes, systematics, phylogeny
Author for correspondence:
Julius Lukeš
e-mail: jula@paru.cas.cz
†These authors contributed equally to this

study.
© 2021 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution
License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original
author and source are credited.
Euglenozoa: taxonomy, diversity and
ecology, symbioses and viruses

Alexei Y. Kostygov1,2,†, Anna Karnkowska3,†, Jan Votýpka4,5,†,
Daria Tashyreva4,†, Kacper Maciszewski3, Vyacheslav Yurchenko1,6

and Julius Lukeš4,7

1Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
2Zoological Institute, Russian Academy of Sciences, St Petersburg, Russia
3Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research Centre, University of
Warsaw, Warsaw, Poland
4Institute of Parasitology, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
5Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
6Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov University,
Moscow, Russia
7Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic

AYK, 0000-0002-1516-437X; AK, 0000-0003-3709-7873; KM, 0000-0001-8556-9500;
VY, 0000-0003-4765-3263; JL, 0000-0002-0578-6618

Euglenozoa is a species-rich group of protists, which have extremely diverse
lifestyles and a range of features that distinguish them from other eukar-
yotes. They are composed of free-living and parasitic kinetoplastids,
mostly free-living diplonemids, heterotrophic and photosynthetic euglenids,
as well as deep-sea symbiontids. Although they form a well-supported
monophyletic group, these morphologically rather distinct groups are
almost never treated together in a comparative manner, as attempted here.
We present an updated taxonomy, complemented by photos of repre-
sentative species, with notes on diversity, distribution and biology of
euglenozoans. For kinetoplastids, we propose a significantly modified tax-
onomy that reflects the latest findings. Finally, we summarize what is
known about viruses infecting euglenozoans, as well as their relationships
with ecto- and endosymbiotic bacteria.
1. Introduction
It is generallyaccepted that Euglenozoabelong to themost unusual eukaryotes [1–
3]. This is based on a substantial body of evidence showing that in a number of
cellular processes and structures, these almost invariably mono- or bi-flagellated
protists departed from what can be considered the ‘eukaryotic consensus’. How-
ever, this consensus was defined by the studies of just a handful of model
organisms, most of which are multicellular [4]. Hence, since the majority of the
extant eukaryotic diversity is hidden in protists [5], we prefer to use a ‘protist-cen-
tric’ view,which postulates that these unicellular forms actually are the eukaryotic
standard, while the other lineages represent departures from the norm.

The phylum Euglenozoa splits into three well-defined lineages—euglenids,
kinetoplastids and diplonemids—with different life strategies and distinct mor-
phologies, yet still unified by a number of common features [6]. Although the
euglenids are sometimes further subdivided into Euglenida and Symbiontida
[3], both groups are usually treated together due to their morphological simi-
larity, and we still cannot compare their genomic features in the absence of
such data from the latter taxon [7]. A recent multigene phylogenetic reconstruc-
tion pointed to the potentially sister relationship between Symbiontida and
Glycomonada (Kinetoplastea + Diplonemea) [8], suggesting that Symbiontida
may become a separate group when more data become available (tree A).
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Tree A. Euglenozoa. A consensus tree based on multiple phylogenetic recon-
structions showing relationships among major clades. The unstable position of
Symbiontida is marked with a dotted line and further described in the section
on euglenid taxonomy.
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Apart from summarizing taxonomic works, the eugle-
nozoans are almost never treated together in the literature.
The kinetoplastid flagellates are by far the best-studied repre-
sentatives (almost exclusively from a parasitology-centric
perspective), with most attention given to the causative
agents of serious diseases, such as sleeping sickness,
Chagas disease and leishmaniases [9,10]. The diplonemids,
as detailed below, were considered a marginal group with
no ecological relevance. That has changed recently [11,12],
but still very few molecular data other than 18S rRNA are
available for this almost exclusively marine group. Finally,
the photosynthetic and heterotrophic euglenids are ecologi-
cally significant, primarily in freshwater ecosystems, and
have potential in biotechnologies [2,13].

The striking differences in lifestyles and cellular (ultra)-
structure obscure the significant similarities in basic
molecular processes. Firstly, all these groups distinguish
themselves from other eukaryotes by transcribing nuclear
genes in a polycistronic manner [14]. In neither case are the
co-transcribed genes functionally related, which dis-
tinguishes them from the prokaryotic operons. The usually
very long polycistronic mRNA is subsequently processed
into monomeric transcripts, which are subject to another
process that is found in eukaryotes rather infrequently—
trans-splicing. At the 50 end of each monocistronic mRNA,
short spliced leader (SL) RNA, already equipped with a
methylated cap, becomes attached. The corresponding SL
RNA gene is invariably multicopy, and highly conserved,
yet with minor species-specific differences [15].

The similarities do not stop there. In their single or dual
flagella, all euglenozoans evolved an extra-axonemal struc-
ture termed the paraflagellar rod, which supports their
flagella [16]. The paraflagellar rod has a characteristic lat-
tice-like structure, which is composed of dozens of proteins,
phylogenetically restricted to euglenozoans. It is reduced
only in the endosymbiont-containing trypanosomatids and
the amastigotes of Leishmania [17]. Studied so far only in kine-
toplastids, the paraflagellar rod not only increases propulsion
of the cell [18], but also participates in morphogenetic and
metabolic roles, as well as in environmental sensing [19].
While all these synapomorphies were probably present in
the euglenozoan common ancestor, euglenids, diplonemids
and kinetoplastids have acquired significant differences
over the course of evolution. This is particularly striking in
the case of cis-splicing, since spliceosomal introns are
almost absent in the latter group [20], while they are abun-
dantly present in euglenids and diplonemids, many being
seemingly non-canonical [11,21]. Another clear difference
rests in the size of both nuclear and mitochondrial genomes.
The dearth of high-quality data for nuclear genomes of eugle-
nids and their absence in the case of diplonemids are due to
the large size and repetitive character of the latter. The tran-
scriptomes from both groups contain an extremely high
number of protein-coding genes, probably reflecting their
metabolic versatility [6,13]. The situation is quite different
in kinetoplastids, the parasitic lifestyle of which led to gene
reduction and streamlining [6]. Moreover, due to their small
and compact genomes, they belong to the most sequenced
eukaryotes [22].

Unexpected differences among the main euglenozoan
lineages recently became apparent for their mitochondrial
genomes and transcriptomes. Kinetoplastids harbour in
their mitochondrial DNA in the form of relaxed (rarely super-
coiled) circular molecules, either catenated or free, of two
types—maxicircles and minicircles, with the former carrying
all protein-coding genes, while the latter encode guide RNA
genes required for the editing of the maxicircle transcripts
[23]. The size of maxicircles is rather uniform, while the mini-
circles come in different variants [24]. In diplonemids, the
single type of non-catenated circles uniquely encodes frag-
ments of protein-coding genes, the transcripts of which
have to be massively trans-spliced and edited in order to
become translatable [25]. However, in both groups, the mito-
chondrial DNA is inflated, and its transcripts are extensively
edited [26]. This contrasts with euglenids that lack any form
of editing in their mitochondrion, which also contains a small
genome composed of heavily fragmented linear molecules
[27]. Probably, the most important difference among these
groups is the presence of a secondary green plastid solely
in euglenids, which have acquired it after their divergence
from other euglenozoans [2,28].

Until recently, our knowledge of different groups within
euglenozoans was much influenced by the availability of
full-size nuclear genome sequences. While hundreds of
high-quality genomes are available for trypanosomatids
[22], only one such genome is available for bodonids [29]
and euglenids [13], respectively, and none for diplonemids.
However, this is bound to change soon, mostly due to the
ever-decreasing costs and improving sequencing technol-
ogies. Recent comparative analyses of molecular features
among kinetoplastids, euglenids and diplonemids were
based on transcriptomes available for all of them [30].

Future studies of euglenozoans will be heavily influenced
by the accessibility of their representatives to (efficient) gen-
etic manipulations. The amenability of trypanosomatids to a
range of genetic tools turned them into arguably the function-
ally best-studied protists [31], while most other groups
significantly lag behind. However, this unfavourable situation
has changed recently, as first reports of genetic modifications
of bodonids, diplonemids and euglenids have been published
[32–36]. Anticipated improvement of the methodologies of
forward and reverse genetics, which would allow medium-
or high-throughput functional analyses in these taxonomic
groups, almost guarantee major discoveries.



Plate A. Bodonids. Light micrographs of cultured (1) Actuariola framvarensis (provided by Thorsten Stoeck); (2) Neobodo curvifilus (provided by Kristina Prokina and Denis
Tikhonenkov); (3) Rhynchomonas nasuta (provided by Kristina Prokina and Denis Tikhonenkov); (4) Rhynchobodo sp. (provided by Kristina Prokina and Denis Tikhonenkov);
(5) Azumiobodo hoyamushi (provided by Shinichi Kitamura and Euichi Hirose); (6) Dimastigella mimosa (provided by Kristina Prokina and Denis Tikhonenkov); (7) Bordna-
monas tropicana (provided by Kristina Prokina and Denis Tikhonenkov); (8) Klosteria bodomorphis (provided by Kristina Prokina and Denis Tikhonenkov); (9) Bodo saltans
(provided by Kristina Prokina and Denis Tikhonenkov); (10) Cruzella marina; (11) Allobodo chlorophagus (provided by Alastair Simpson and Yana Eglit); (12) Procryptobia
sorokini (provided by Kristina Prokina and Denis Tikhonenkov); (13) Parabodo caudatus (provided by Kristina Prokina and Denis Tikhonenkov); (14) Perkinsela sp. (arrow
indicates its position inside Paramoeba pemaquidensis) (provided by Ivan Fiala); (15) Giemsa-stained Trypanoplasma borreli; (16) Cryptobia vaginalis (provided by Marina
N. Malysheva); (17) Toluidine-stained semi-thin section of fish gill with attached Ichthyobodo necator (provided by Iva Dyková). Scale bar, 10 µm (1–8; 10–17); 5 µm (9).
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Euglenozoa is a very peculiar group, encompassing
organisms strikingly dissimilar in their ecology, ranging
from autotrophy to obligate parasitism. This inevitably influ-
enced their classification in the era of the two-kingdoms-of-
life paradigm. Kinetoplastids and diplonemids were histori-
cally considered predominantly as protozoa, and thus the
International Code of Zoological Nomenclature (ICZN) was
used for their nomenclature, while euglenids have been
classified by different authors as either protozoa or algae.
This ambiguity is reflected in their nomenclature, which has
been governed in parallel by the ICZN as well as the Inter-
national Code of Botanical Nomenclature (ICBN) and the
International Code of Nomenclature for algae, fungi and
plants (ICN), which replaced the latter in 2011. Apart from
formal differences, such as the rules on citing authorship of
names and emendations, this led to significant issues that
include certain taxa having different names depending on
the selected system (zoological or botanical). This concerns
names of family-group taxa, which have different suffixes
depending on the system and, more importantly, names of
genera, which may be valid according to one code, but
regarded as junior homonyms, and therefore replaced with
different names. In addition, the ICZN jurisdiction does not
extend above the family-group level, whereas ICN does not
have such a restriction. Here, the nomenclature of kinetoplas-
tids and diplonemids follows the ICZN, while for some
euglenid groups, the ICN is used by default with the valid
names according to the ICZN indicated.
2. Kinetoplastea
2.1. Biology

2.1.1. Free-living kinetoplastids

The common ancestor of Kinetoplastea apparently was a free-
living benthic bacterivorous organism using the anterior
flagellum for motion and transporting food particles to the
cytostome, while the posterior one ensured gliding on the
substrate (plate A, 1,2,4–10,12–14). This lifestyle is still pre-
served by a large proportion of kinetoplastids [37]. They
inhabit permanent and temporary water bodies with various
levels of salinity (freshwater to hypersaline) and some species
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were shown to tolerate the transition from marine water to
freshwater, and vice versa [38–41]. Kinetoplastids are very
numerous in benthic communities, where they constitute
5–20% of the total biomass of all heterotrophic flagellates,
second only to euglenids, suggesting their important role
in controlling bacterial growth [42]. They are abundant in
seawater ice and some species can be cultured even from
the pelagic zone, demonstrating their presence there at least
at the cystic stage [43,44]. Recent studies using molecular
methods demonstrated that in many water bodies, most of
the kinetoplastid biomass is created by neobodonids, of
which Neobodo, Rhynchomonas and Dimastigella are the most
frequent ones (plate A, 7,9,14) [45–47]. An extensive analysis
of free-living kinetoplastids in hundreds of globally collected
oceanic samples revealed their abundance being 0.14%, with
highest abundance in the mesopelagic zone. Their commu-
nity structure and richness are significantly influenced by
oxygen concentration, salinity and temperature [48].

Moreover, many kinetoplastids live in the soil and
readily settle on various organic substrates, such as faeces,
composts, etc. [49,50]. Most of the free-living flagellates
graze on bacteria with the help of cytostomal lips or, as in
Rhynchomonadidae, a flagellum-attached motile proboscis.
In addition to bacterial cells, their digestive vacuoles can
contain microalgae or detritus particles. Parabodo caudatus
(plate A, 13), being a relatively large (up to 20 µm long)
species, exerts both bacterivory and predation, while Rhynch-
obodo spp. (plate A, 4) are obligatory predators devouring
other flagellates [37].

Some kinetoplastids are known to form cysts, which help
them to survive adverse conditions, for example, pass through
the digestive system of an animal and settle in its faeces after
their discharge [37]. Moreover, some of these flagellates
become very tolerant to harsh environments even at the
active (non-encysted) stage. This resulted in a series of records
of free-living kinetoplastids (Parabodo caudatus, Dimastigella
trypaniformis and Procryptobia tremulans) from stool and urine
samples or urine-impregnated animal cage bedding some-
times misinterpreted as evidence of their parasitic nature
[51–54]. Interestingly, such tolerance in parabodonids appar-
ently preadapted them to parasitism, which originated in
this group at least twice [55].

2.1.2. Parasitic, mutualistic and commensal non-trypanosomatid
kinetoplastids

Multiple transitions to various forms of symbiosis can be
observed in all orders of Kinetoplastea except Eubodonida
(tree B). The earliest branch within this group, Prokinetoplas-
tida, does not contain any described free-living forms. The
ectoparasitic Ichthyobodo, affecting both freshwater and
marine fish, is generally similar to free-living kinetoplastids
(plate A, 17). In contrast with other symbiotic forms, it
anchors on the host epithelium with its rostrum forming an
attachment disc and a cytostome process, which is inserted
directly into the cytoplasm of the host cell and feeds by
myzocytosis [56]. Accumulation of parasites on the epi-
thelium of gills and fins leads to tissue necrosis, which
often entails the death of fish, especially fingerlings. Dissemi-
nation of Ichthyobodo spp. occurs using a free-swimming stage
lacking the rostrum [57].

Another prokinetoplastid genus, Perkinsela, represents
one of the most simplified symbiotic eukaryotes,
permanently living in the cytoplasm of amoebae, such as
Paramoeba (plate A, 14) [58]. The nature of their relationships
is mutualistic as judged by reciprocal metabolic dependence
of the two partners, evident from the study of their genomes
[59]. Since both Ichthyobodo and Paramoeba live on fish gills, it
was proposed that an ancestral Ichthyobodo-like flagellate had
been engulfed, but not digested, by an amoeba, and even-
tually evolved into the endosymbiont Perkinsela [58].
Perkinsela is tightly associated with cosmopolitan Paramoeba,
lacks any traces of flagellum (plate A, 14), and has an extre-
mely reduced metabolism, as well as the largest known
mitochondrial DNA [59].

The currently unclassified flagellate Desmomonas pro-
rhynchi, a parasite of the turbellarian Prorhynchus, shares
two features with Ichthyobodo: polykinetoplast DNA and
attachment to the host cell by an appendage at the anterior
end. However, this structure performs an exclusively mech-
anical function, while feeding is supposed to occur via
osmotrophy [60]. Another flagellate with an uncertain taxo-
nomic position, Cephalothamnium cyclopum, is the only
described colonial kinetoplastid, which attaches to freshwater
copepods [61]. Like its free-living relatives, this flagellate
feeds by intercepting bacterial cells with its anterior flagellum
and directing them to cytostomal opening. Given that
C. cyclopum uses its host only as a substrate and the only
inconvenience from its presence may consist of decrea-
sed hydrodynamic characteristics of the crustacean, this
kinetoplastid is considered as ectocommensal.

Azumiobodo hoyamushi is a neobodonid parasite of asci-
dians, of which the most important is the sea pineapple
Halocynthia roretzi, a cultivated edible species popular in
Korea and Japan (plate A, 5). By invading the tunic, this fla-
gellate is responsible for the so-called soft tunic syndrome,
associated with high mortality rates [62]. Being seasonal, it
survives the period of high temperatures in resistant cysts
attached to the substrate [63,64]. Another parasitic neobodo-
nid is the recently described Allobodo chlorophagus, invading
the utricles and the main filaments of the green siphonal
alga Codium fragile and feeding on its chloroplasts and
starch granules (plate A, 11) [65].

Parasitic parabodonids are represented by the genera Try-
panoplasma and Cryptobia, which often used to be combined
into one genus due to morphological similarity. Trypano-
plasma spp. are extracellular parasites of fish bloodstream
transmitted by haematophagous leeches during blood-
feeding (plate A, 15) [66]. However, at least two species,
T. salmositica and T. bullocki, can exit to the body surface
where they reside in the mucus and can be transmitted to
other fish by direct contact [57]. After ingestion with the
blood, parasites multiply in the leech crop without significant
changes in morphology and migrate to the proboscis sheath,
wherefrom they are transmitted to the bloodstream of
another fish [67]. The severity of infection—acute to
chronic—apparently depends more on the level of mutual
adaptation as well as the individual variation of host immu-
nity between host and parasite than on parasitaemia [68–70].
There is only a single record of a trypanoplasma in a non-fish
host, namely in a salamander [71].

The genus Cryptobia can be subdivided into three distinct
ecological groups: (i) ectoparasites of fish, (ii) endoparasites
of invertebrates and (iii) endoparasites of fish. Members of
the first group, represented by Cryptobia carassii, live on fish
gills and are regarded as commensals feeding on dead
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epithelium and microorganisms [57]. However, gill infections
by C. branchialis are associated with high mortality in adult
cultured carps, goldfish and catfish as well as in juvenile
grass carp [72]. Lamellasoma bacillaria, described as a monofla-
gellated kinetoplastid living on the fish gills, may also belong
to this group of cryptobiae [73].

In invertebrates, Cryptobia infections are quite diverse in
terms of localization within the host and taxonomic groups
parasitized. Some of them (Cryptobia helicis, C. innominata
and C. carinariae) were found attached to the epithelium of
spermatheca of floating sea snails and various pulmonates
[74–76]. The vagina of haematophagous leeches often serves
as a habitat of C. vaginalis (plate A, 16) [77], while C. udonellae
was described from the excretory system of an ectoparasitic
marine worm [78]. Other species were described from the
intestine of a chaetognath (C. sagittae) and a freshwater pla-
narian (C. dendrocoeli), the latter of which was also detected
in the eggs, pointing to a potential transovarial transmission
[79,80]. It is presumed that Cryptobia spp. from the reproduc-
tive system are transmitted via sexual contacts [75,81], while
the ectoparasites of aquatic animals should have free-swim-
ming swarmers, although this has not been confirmed [73].
The cryptobiae found in the intestinal contents of frogs and
lizards appear to be accidentally ingested parasites of invert-
ebrates, as judged by the morphology of the flagellates and
uniqueness of such records [82,83].

In the third group of cryptobiae, encompassing piscine
intestinal flagellates, six out of seven described species are
known as specific parasites of marine fish. These species do
not display any pathogenic effect and therefore are usually
considered as commensals [57]. The only known freshwater
representative of this group, C. iubilans, infects various cichlid
fishes and causes gastroenteritis often associated with inva-
sion of other organs, leading to high mortality [84–86].
Сryptobiae belonging to this group can be transmitted
directly by ingestion from water and by feeding on infected
corpses [57].

Jarrelia atramenti, a flagellate described from the blowhole
mucus of a pygmy sperm whale, appears to be a harmless
commensal feeding on detritus and/or bacteria [87]. Its
resemblance to parasitic parabodonids, proposed to be evi-
dence of their relatedness, may be in fact a parallelism
caused by similar living conditions. Indeed, flexible body
and flagellar attachment evolved independently in Cryptobia,
Trypanoplasma and Dimastigella.

2.1.3. Trypanosomatids

The family Trypanosomatidae contains exclusively obligate
parasites and represents the most diverse kinetoplastid
group in terms of the number of species described and/or
revealed using molecular typing [88–90]. Among parasitic
protists, it has the widest host range: animals (predominantly
insects and vertebrates), flowering plants and even ciliates
[91]. Based on the type of life cycle, trypanosomatids are
usually subdivided into two non-taxonomic groups. Monoxe-
nous species develop in a single host, whereas dixenous
switch between two, of which one serves as a vector. Molecu-
lar phylogenies suggest that the most recent common
ancestor of trypanosomatids was a monoxenous parasite of
insects [92,93], with the dixenous lifestyle emerging indepen-
dently at least three times in distantly related lineages of these
flagellates [55].
2.1.3.1. Monoxenous trypanosomatids
Most trypanosomatid genera are monoxenous and the over-
whelming majority of their species parasitize two large
groups of insects: Diptera and Heteroptera (i.e. flies and
true bugs, respectively) [91,94]. Among other insects, used
by them as hosts are Hymenoptera (bees, bumblebees,
wasps and sawflies), Siphonaptera (fleas), Blattodea (cock-
roaches), Lepidoptera (moths) and Trichoptera (caddis
flies). The single records of monoxenous trypanosomatids
from a louse (Anoplura), a planthopper (Homoptera), a scor-
pion fly (Mecoptera) and a domestic cricket (Orthoptera) may
refer to accidental non-specific infections [91]. The adaptation
to insects, which are omnipresent, extremely diverse and
abundant animals, probably predetermined the transition of
these flagellates to other hosts. Trypanosomatids invaded
Acari (ticks and mites) and freshwater ciliates living side-
by-side with insects, vertebrates and plants. The two latter
host groups are associated with dixenous trypanosomatids,
although monoxenous species have also been occassionally
reported from them [95,96]. The presence of trypanosomatids
in nematodes and molluscs [97] may indicate a more complex
evolutionary pathway of these flagellates, but first it requires
confirmation with modern methods.

The ancestral and still most common lifestyle of monoxe-
nous trypanosomatids includes stages that inhabit insect gut,
usually being attached to its wall, and some either active (i.e.
flagellate) or inactive (endomastigote or cyst-like amastigote)
cells are discharged with faeces. Other insects become
infected by feeding on contaminated substrates or directly
on fresh faeces (coprophagy) [98]. In addition, the parasites
can be transmitted between insects via cannibalism and pre-
dation, although the latter way is probably responsible only
for the transmission of non-specific transient infections [99].
Some monoxenous trypanosomatids can migrate within
insects to other locations in order to facilitate transmission
[89]. Thus, parasitism in Malpighian tubules of female fire-
bugs ensures timing the mass production of infective cyst-
like amastigotes of Blastocrithidia papi to oviposition [100].
Haemocoel invasion allows the inheritance of Herpetomonas
swainei between developmental phases of the host saw fly
[101], while in the case of Leptomonas pyrrhocoris, this
increases the efficiency of transmission by cannibalism
[102]. The role of intracellular stages, which are very rare in
life cycles of monoxenous trypanosomatids, is uncertain
[103]. However, the potential to live intracellularly probably
preconditioned transition of these flagellates to dixeny (see
below) and parasitism in ciliates. The latter has been repeat-
edly described from various ciliate species where it was
always associated with the macronucleus and, at least in
some cases, effective transmission between host cells was
observed pointing to specific relationships [104–107].

Although most monoxenous trypanosomatids are con-
sidered non-pathogenic or even commensals [98], this view
is influenced by the fact that their effects on the hosts are
poorly known and have been investigated in only a few prac-
tically important or model insect species. It was shown that
trypanosomatid infections lead to elevated mortality rates
in triatomine bugs, honeybees, sawflies, eye gnats, fruit
flies, firebugs and water striders [101,108–112]. Other adverse
consequences of trypanosomatid infections on insects include
delayed development, decrease in body weight, disturbed
digestion and excretion, lower endurance, impaired foraging
efficiency and lower fecundity [113–118]. The above effects



roya

6
have a significant impact on host fitness, and thus trypanoso-
matids play an important role in controlling the population
sizes of their hosts.
 lsocietypublishing.org/journal/rsob
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2.1.3.2. Phytomonas
Some trypanosomatids acquired the ability to live in plants, on
which their bug hosts feed and, thus, became dixenous. These
flagellates belong to the genus Phytomonas and parasitize
phloem, fruits, latex or seeds of various plants [119,120]. The
bug hosts serve as vectors and, since the contaminative route
of transmission to plants is not very effective, the parasites
migrate from the intestine through haemocoel to salivary
glands [96]. Here, the infective endomastigotes are formed,
which are inoculated into plant juices with the bug’s saliva
during feeding [103,121,122]. Interestingly, in some species,
no development occurs in the host gut, which is then used
only for the transit of flagellates [103,123]. At least one phyto-
monad species, P. nordicus, became secondarily monoxenous,
since it inhabits a predatory pentatomid bug [124]. The patho-
genicity of Phytomonas for insects remains unknown, while
their effect on plants ranges from asymptomatic infections to
serious diseases of cultural plants [120]. Phytomonas francai
living in lactiferous ducts of manioc is associated with root
dystrophy; P. leptovasorum causes phloem necrosis and sub-
sequent lethal wilt of coffee trees; P. staheli obstructing
phloem of oil and coconut palms accounts for acute wilt in
these plants; and an unnamed phytomonad is responsible
for the withering of red ginger [96]. These diseases have a
high impact on agriculture in developing countries and
result in serious economic losses [119].
2.1.3.3. Leishmania and related dixenous genera
The genera Leishmania, Porcisia and Endotrypanum represent a
monophyletic group, whose parasitism in blood-sucking
sandflies (Phlebotominae) allowed them to become dixenous
parasites of mammals [125]. Secondarily, some Leishmania
spp. changed either the vertebrate host or the vector: the sub-
genus Sauroleishmania switched from mammals to lizards and
snakes, while the subgenus Mundinia started using biting
midges (Ceratopogonidae) instead of sandflies [126–128].
Leishmania is most species-rich genus and many of its mem-
bers are human parasites, which drew most attention to
this group, while the information about Porcisia and
Endotrypanum is scarce. The development of leishmaniae in
vectors is confined to the intestine, although there are some
differences between subgenera in the localization of the
proliferative procyclic promastigotes (midgut, pylorus and/
or hindgut) [127]. However, they eventually migrate to the
anterior midgut, where they destroy the chitin lining of the
stomodaeal valve and secrete a gel plug obstructing the ali-
mentary canal, thus disturbing the normal sucking process
[129]. An infected sandfly regurgitates the plug with meta-
cyclic flagellates into the vertebrate bloodstream and due to
the inability to swallow the blood makes more attempts
increasing chances of spreading the parasites [130]. In the
vertebrate, the metacyclic promastigotes are quickly taken
up by phagocytic cells and proliferate in their phagolyso-
somes as amastigotes [131]. Depending on the behaviour of
infected macrophages, leishmaniasis manifests itself as
either cutaneous (skin ulcers), mucocutaneous (sores in the
mucosa of nose, mouth or throat) or visceral, which affects
internal organs such as the liver, spleen and bone marrow
and is usually fatal without treatment [127].

About 20 species of Leishmania, belonging to the subge-
nera Leishmania, Viannia and Mundinia parasitize humans.
They are responsible for up to one million new cases of leish-
maniasis annually, of which up to 90 000 correspond to the
visceral form [132]. The visceral form of the disease can be
spread even outside the endemic areas either venereally or
congenitally [133–136]. In addition to humans, Leishmania
was reported to infect about 70 species of mammals (rodents,
carnivores, xenartrans, hyraxes, marsupials, chyropterans,
ungulates lagomorphs and primates), with most cases being
asymptomatic. The only notable exceptions are canine visc-
eral leishmaniasis, with severe symptoms in over 50% of
cases [137], and rare cases of atypical cutaneous leishmaniasis
in cows and horses [138,139]. Porcisia living in porcupines
and Endotrypanum parasitizing sloths and squirrels do not
appear to produce any symptoms [125]. However, Leishmania
colombiensis (now assigned to Endotrypanum) is known to
cause both cutaneous and visceral leishmaniasis-like diseases
in humans [140,141].
2.1.3.4. Trypanosoma
Trypanosoma is a very speciose genus enclosing approxi-
mately 500 species or over 60% of all described species of
the family Trypanosomatidae (plates B and C, 18–40).
While the frog-infecting type species (T. sanguinis = T. rotator-
ium) described by Gruby already in 1843 may be of marginal
importance, ever since trypanosomes became the best-known
protists. Life cycles of these flagellates vary considerably as
they parasitize all classes of vertebrates (from agnathans to
mammals) and are transmitted by a wide range of vectors
including blood-sucking insects (flies, bugs, fleas and lice),
ticks, leeches and even vampire bats [9,91]. In vertebrates,
they occur most frequently as trypomastigotes, rarely as epi-
mastigotes or amastigotes, while in invertebrates, they
predominantly exhibit most trypomastigote or epimastigote
morphology, or infrequently occur as promastigotes and
amastigotes [92].

From the practical point of view, the most important mam-
malian trypanosomes were traditionally subdivided into two
sections or intrageneric taxons that followdistinct developmen-
tal programmes [142]: Salivaria (derived from saliva), with the
best-known member being the Trypanosoma brucei complex
causing human African sleeping sickness and nagana in live-
stock and other animals (plate C, 32–34), terminate
development in the salivary glands mouthparts of the vector
and are transmitted to a vertebrate host by bite. Stercoraria
(stercus = dung) exemplified by Trypanosoma cruzi complex
species causing Chagas disease (plate C, 37–38), terminate
development in the rear part of the digestive tract of the
vector with the transmission to the vertebrate host being con-
taminative by excrements. With the advent of molecular
phylogenetics, it became obvious that neither mammalian try-
panosomes in general nor any of the two proposed sections
represent monophyletic groups, and therefore they do not
deserve a taxonomic status [89,143,144]. Nevertheless, the
words salivarian/stercorarian still can refer to the typeof devel-
opment within the vector. Non-mammalian trypanosomes
generally follow the stercorarian developmental programme,
but in leeches, parasites migrate to the proboscis sheath to be
transmitted during blood-sucking [57].



Plate B. Trypanosoma (aquatic clade). Light micrographs of Giemsa-stained (18) T. (Trypanosoma) rotatorium ex Pelophylax kl. esculentus ( provided by Klára Polo-
prudská); (19) T. (Trypanosoma) loricatum ex Pelophylax kl. esculentus ( provided by Klára Poloprudská); (20) T. (Trypanosoma) ranarum ex Pelophylax kl. esculentus
( provided by Klára Poloprudská); (21) T. (Haematomonas) clandestinus ex Caiman yacare (experimental infection) ( provided by Erney Camargo and Marta Teixeira);
(22) T. (Haematomonas) cf. cobitis ex Cobitis ‘taenia’; (23) T. (Haematomonas) sp. ex cichlid ( provided by Iva Dyková). Scale bar, 10 µm (18–23).
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Trypanosoma brucei evansi and T. b. equiperdum are two
notable exceptions (plate C, 33–34), as they lost the capacity
to survive in the gut of an insect vector [145]. The former sub-
species therefore switched to mechanical transmission, which
allowed it to use non-specific vectors, while the latter adapted
to the direct (venereal) transmission and thus became a
monoxenous parasite [146]. In other species, direct trans-
mission can also occur, but is facultative [147–150]. The
most (in)famous species are Trypanosoma brucei and T. cruzi,
which cause serious human diseases—sleeping sickness and
Chagas disease, respectively [151]. The first one is transmitted
by tsetse flies in Africa and invades various tissues, but pri-
marily the blood and adipose tissue [152], as free-
swimming trypomastigotes and eventually infects cerebrosp-
inal fluid with fatal consequences [153]. Being a serious
public health threat in the past, this disease is now on the
way to elimination [154]. Trypanosoma cruzi is transmitted
by triatomine bugs among a wide range of mammalian
hosts, in which it develops in various organs and tissues as
intracellular amastigotes [155]. In most cases, the disease
does not manifest clinical signs at the beginning, but
during the prolonged chronic phase, it significantly under-
mines health in the human population of South and Central
America leading to increased mortality rates [156]. Trypano-
soma rangeli has the same geographical distribution and
vectors as T. cruzi and is also able to infect humans but
appears to be non-pathogenic [157]. Some tsetse-transmitted
African trypanosomes, such as T. vivax, T. congolense and
T. brucei brucei, cause serious diseases in livestock, collectively
named African animal trypanosomiasis. These diseases are
associated with high mortality rates and lead to significant
damage in animal husbandry, although some local breeds
and wild animals acquired tolerance to them [158]. For the
overwhelming majority of trypanosome species, their effects
on the host are not known and they are often considered as
non- or subpathogenic and can cause observable disease
only under stress conditions. This is exemplified by piscine
trypanosomes, which seem to be well tolerated in wild fish
populations [159]. However, in farmed fish or wild juvenile
individuals, infections are associated with high mortality
rates due to anaemia, anorexia and tissue damage [160–163].

2.2. Taxonomy
This section contains nomenclatural changes and accord-
ing to the ICZN requirements for publications in
online-only journals, this work has been registered in
Zoobank: urn:lsid:zoobank.org:pub:81EA01C5-8989-4BBD-
9C64-04D81132307D.

Class Kinetoplastea Honigberg, 1963 emend. Vickerman,
1976 (tree B).

Possess kinetoplast, represented by one or several large
masses of mitochondrial DNA termed kinetoplast
DNA (kDNA). Four kinetoplast types are distinguished:
eukinetoplast—dense network of interlocked DNA circles,
prokinetoplast—single compact mass not organized into a
network, polykinetoplast—several clusters scattered over
the mitochondrial lumen, and pankinetoplast—a diffuse
mass occupying a large portion of a mitochondrial lumen
[164]. Ancestrally, kinetoplastids bear two heterodynamic
flagella, of which one or both were lost in some lineages;
mitochondrial RNA undergoes editing represented by
deletions and insertions of uridine residues. Some features
considered for a long time to be defining (e.g. polycistronic
transcription of nuclear genes, trans-splicing via spliced
leader RNA, compartmentalized glycolysis, base J, etc.)
were recently shown to be present also in other euglenozoan
lineages [6].

Note: Until relatively recently, all kinetoplastids have
been classified into two large groups—bodonids (free-
living, ectocommensals, ecto- or endoparasitic biflagellate
species) and trypanosomatids (exclusively endoparasitic uni-
flagellate species). However, the 18S rRNA gene-based
molecular phylogenetic analysis showed paraphyly of bodo-
nids, which were subsequently separated into four orders



Plate C. Trypanosoma (terrestrial clade). Light micrographs of Giemsa-stained (24) T. (Trypanomorpha) avium ex Lanius collurio; (25) T. (Ornithotrypanum) everetti
( provided by Gediminas Valkiūnas); (26) T. (Avitrypanum) culicavium (experimental infection) ( provided by Milena Svobodová); (27) T. (Megatrypanum) theileri
ex cattle ( provided by Andrei Mihalca); (28) T. (Squamatrypanum) cascaveli ex Crotalus durissus ( provided by Erney Camargo and Marta Teixeira); (29) T. (Crocotrypanum)
terena ex Caiman yacare ( provided by Erney Camargo and Marta Teixeira); (30) T. (Australotrypanum) copemani ex Bettongia penicillata ( provided by Sarah Keatley and
Andrew Thompson) (31) Trypanosoma livingstonei ex African bat ( provided by Erney Camargo and Marta Teixeira); (32) T. (Trypanozoon) brucei brucei ex mouse (exper-
imental infection); (33) T. (Trypanozoon) brucei equiperdum ex mouse (experimental infection); (34) T. (Trypanozoon) brucei evansi ex mouse (experimental infection);
(35) T. (Herpetosoma) lewisi ex Rattus sp.; (36) T. (Aneza) vespertilionis ex Pipistrelus pipistrelus; (37) T. (Schizotrypanum) cruzi (C-shape; experimental infection); (38)
T. (Schizotrypanum) cruzii (S-shape; experimental infection); (39) T. (Duttonella) vivax; (40) T. (Nannomonas) congolense. Scale bar, 10 µm (24–40).
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[165]. Thus, now the term ‘bodonids’ for the designation of
non-trypanosomatid kinetoplastids is deprecated. As
judged by available environmental sequences, the diversity
of kinetoplastids is much broader than that described
to date, and there are some undiscovered lineages
potentially representing new high-level taxa (up to the
subclass) [166].

• Subclass Prokinetoplastia Vickerman, 2004. The phyloge-
netic group enclosing the genera Ichthyobodo and
Perkinsela as judged by 18S rRNA gene-based trees [165].
○ Order Prokinetoplastida Vickerman, 2004. With the

same definition as the subclass.
▪ Family Ichthyobodonidae Isaksen et al., 2007. Ectopar-
asitic on freshwater andmarine fish; polykinetoplastic;
biflagellate; the flagellar pocket extends to the lateral
cell surface as a longitudinal groove; the modified
anterior end (rostrum), present in trophozoites, is
used for attachment [167]. Single genus.

▪ Genus Ichthyobodo Pinto, 1928. With the
same definition as the family.
Type species: Costia necatrix Henneguy,

1883 (= Ichthyobodo necator) (plate A, 17).

▪ Family Perkinselidae Kostygov, fam. nov.

Diagnosis: The phylogenetic group comprising
Perkinsela Dyková, Fiala and Peckova, 2008 (type
genus) and related endosymbiotic forms as judged
from 18S rRNA gene-based trees [168,169].

▪ Genus Perkinsela Dyková, Fiala and Peck-
ová, 2008. Permanently endosymbiotic
in the cytoplasm of various amoebae
(Paramoeba, Neoparamoeba, Janickina, etc.),



Tree B. Kinetoplastea. A tree summarizing multiple phylogenetic reconstructions, mostly 18S rRNA gene-based. Highlighting denotes lifestyles (see graphical
legend). Asterisk denotes that the protist can be cultivated only within its host. Host Trypanosomatidae clade is collapsed (shown with a triangle) and is presented
in detail on a separate figure.
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parasitophorous vacuole not formed; oval
aflagellate cells; massive prokinetoplast;
usually binucleate; microtubular corset
reduced and present only in a thin layer
on both sides of the kinetoplast; no oral
apparatus, no flagellum [58,169].
Type species: Perkinsiella amoebae

Hollande, 1980 (= Perkinsela amoebae).
Monotypic (plate A, 14).
Note: Axenic cultivation is impossible,

but can be grown in the host amoebae.
• Subclass Metakinetoplastia Vickerman, 2004. The phylo-

genetic group enclosing Neobodonida, Parabodonida,
Eubodonida and Trypanosomatida as judged by 18S
rRNA gene-based trees [165].

○ Order Eubodonida Vickerman 2004. Free-living;
biflagellate, with non-tubular mastigonemes on the
anterior flagellum; prokinetoplastic; phagotrophic,
with anterolateral cytostome bordered by lappets
and no conspicuous preoral ridge, cytopharynx tra-
versing body [165]. Single family.
▪ Family Bodonidae Bütschli, 1883. With the same
definition as the order. Single genus.
▪ Genus Bodo Ehrenberg, 1830. Solitary, free-
living; phagotrophic; prokinetoplastic; free
recurrent flagellum; non-prominent rostrum;
lateral cytostome—cytopharynx complex
without prismatic rod [165].

Type species: Bodo saltans Ehrenberg, 1830
(plate A, 9).

○ OrderNeobodonidaVickerman, 2004. Free-living, or para-
sitic; solitary; biflagellate, usually without mastigonemes,
both flagella free or the posterior one attached to the
cell body; pro- or polykinetoplastic; apical cytostome on
preflagellar rostrum; phagotrophic [3,165].
▪ Family Allobodonidae Goodwin et al., 2018. The
phylogenetic group enclosing Allobodo and related
forms on 18S rRNA gene-based trees [65].

▪ Genus Allobodo Goodwin et al., 2018.
Parasitic in seaweeds; both flagella free;
with apical rostrum; phagotrophic, short
tubular cytopharynx not supported by a
microtubular rod; pankinetoplastic [65].

Type species: Allobodo chlorophagus
Goodwin, Lee, Kugrens and Simpson, 2018.
Monotypic (plate A, 11).



royalsocietypublishing.org/journal/rsob
Open

Biol.11:200407

10
▪ Family Neobodonidae Cavalier-Smith, 2016. Free-
living or parasitic in animals; biflagellate, flagella
free or attached; rostrum rigid; pro-, poly- or
pankinetoplastic; phagotrophic, bacterivorous or
eukaryovorous [170].

Note: There is no evidence that the family is
monophyletic.

▪ Genus Actuariola Stoeck, Schwarz, Boenigk,
Schweikert, von der Heyden and Behnke,
2005. Free-living; solitary, phagotrophic;
both flagella free and without mastigonemes;
prokinetoplastic; cytopharynx supported by
a non-prismatic microtubular rod [171].

Type species: Actuariola framvarensis
Stoeck, Schwarz, Boenigk, Schweikert, von
der Heyden and Behnke, 2005. Monotypic
(plate A, 1).

▪ Genus Azumiobodo Hirose, Nozawa, Kumagai
and Kitamura, 2012. Parasitic in ascidians;
anterior flagellum attached to the rostrum in
basal part, posterior flagellumusually attached
to the cell body; polykinetoplastic; cytostomeat
the apex of the long rostrum; curved cytophar-
ynx, presence of supporting rod not assessed;
unique globular bodies with electron-dense
bands of various shapes [62].

Type species: Azumiobodo hoyamushi Hirose,
Nozawa, Kumagai andKitamura, 2012.Mono-
typic (plate A, 5).

▪ Genus Cruzella Faria, Cunha and Pinto, 1922,
emend Kostygov.

Diagnosis: Free-living, solitary, two masti-
goneme-free flagella originating under beak-
shaped rostrum; phagotrophic, cytostome on
rostrum tip, well-developed tubular cyto-
pharynx without supporting microtubular
rod; polykinetoplastic; intensive metaboly
[172–174].

Type species: Cruzella marina Faria, Cunha
and Pinto, 1922. Monotypic (plate A, 10).

▪ Genus Cryptaulaxella Kostygov, nom. nov.
Diagnosis: Free-living, solitary; both fla-

gella free; prominent spiral groove on the
surface; the presence of extrusomes question-
able; ultrastructure not studied; type of
kinetoplast uncertain [49,175].

Type species: Spiromonas akopos Skuja,
1939 (= Cryptaulaxella akopos comb. nov.).

Justification: This newly proposed name
refers to the genus previously known as: (i)
Spiromonas Skuja, 1939—homonym of Spiro-
monas Perty, 1852 [176] (Dinoflagellata); (ii)
Cryptaulax Skuja, 1948—homonym of Cryp-
taulax Tate, 1869 [177] (Gastropoda) and
Cryptaulax Cameron, 1906 [178] (Insecta);
and (iii) Cryptaulaxoides Novarino, 1996—
homonym of Cryptaulaxoides Uchida 1940
(Insecta).

Etymology: The new name and the two
previous ones share the Greek roots κρυπτός
(hidden) and αὖλαξ (furrow), referring to the
distinctive feature of the genus, and the fem-
inine gender.
Note: All described species were once
assigned to Rhynchobodo and the diplonemid
Hemistasia based on light microscopy [179].
Molecular phylogenetic inference showed that
flagellates identified as Rhynchobodo and Cryp-
taulax/Cryptaulaxoides are unrelated [180].

▪ Genus Klosteria Mylnikov and Nikolaev,
2003. Free-living, solitary; both flagella free,
arise from a subapical flagellar pocket and
bear short acronemes, anterior one with
mastigonemes; rostrum not prominent;
phagotrophic, cytopharynx tubular, without
supporting microtubular rod; cytostome
lips absent; pankinetoplastic; trichocysts
near ventral side of the flagellar pocket [181].

Type species: Klosteria bodomorphis
Mylnikov and Nikolaev, 2003. Monotypic
(plate A, 8).

▪ Genus Neobodo Vickerman, 2004. Free-living;
solitary, phagotrophic; biflagellate with
free posterior flagellum; prokinetoplastic;
cytopharynx supported by a prismatic
microtubular rod [165].

Type species: Bodo designis Skuja, 1948
(= Neobodo designis) (plate A, 2).

Note: as judged by available phylogenies,
the genus is polyphyletic [65,180].

▪ Genus Rhynchobodo Vørs, 1992. Free-living,
solitary; flagella exit subapically and bear
acronemes; phagotrophic; well-developed
rostrum with apical cytostome, tubular
cytopharynx and multiple extrusomes; con-
spicuous spiral groove on the body surface;
polykinetoplastic [182] (plate A, 4).

Type species: Cryptaulax taeniata Skuja,
1956 (= Rhynchobodo taeniata).

Note: Authorship of this name is often
attributed to Lackey who mistakenly used
it instead of Rhynchomonas [183]. However,
only Vørs made the name available by pro-
viding the genus description and specifying
the type species [182].

▪ Family Rhynchomonadinae Cavalier-Smith, 2016. Soli-
tary, free-living; biflagellate, the anterior flagellum
adheres to the flexible proboscis and they move
together, the posterior flagellum is used for gliding
and attached to the body at least in its proximal part;
cytopharynx not supported by a microtubular
rod [170].

▪ Genus Dimastigella Sandon, 1928. Free-living,
in soil or freshwater; anterior flagellum sig-
nificantly longer than the proboscis,
posterior flagellum attached to the cell body
across the whole length of the latter; cytos-
tome on or under rostrum; phagotrophic;
polykinetoplastic [184,185] (plate A, 6).

Type species: Dimastigella trypaniformis
Sandon, 1928.

▪ Genus Rhynchomonas Klebs, 1892. Free-
living, short anterior flagellum is attached
to a long rostrum representing a motile pro-
boscis, posterior flagellum attached to the
cell body in the proximal part, both flagella
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with mastigonemes; phagotrophic; prokine-
toplastic [186].

Type species: Heteromita nasuta Stokes,
1888 (= Rhynchomonas nasuta) (plate A, 3).

○ Order Parabodonida Vickerman, 2004. Clade enclosing
the genera Cryptobia, Parabodo, Procryptobia and
Trypanoplasma. Free-living, commensal or parasitic;
biflagellate, without mastigonemes, posterior flagellum
attached or free; pro-, poly- or pankinetoplastic;
phagotrophic or osmotrophic; anterolateral cytostome
with or without developed cytopharynx [3,165].
Previously, parasitic representatives of this group
were considered a single lineage and often lumped
into one genus (Cryptobia), but molecular phylogenetic
analyses showed their polyphyly [187].
▪ Family Cryptobiidae Poche, 1911 emend. Kostygov.
Clade uniting the genera Cryptobia and Parabodo
based on 18S rRNA gene phylogenies [68,188].

▪ Genus Cryptobia Leidy, 1846. Parasites/
commensals of fish (on gills or in the gut) or
various invertebrates (in the lumen of repro-
ductive, digestive or excretory organs)
[73,78,189]; recurrent flagellum attached
to cell body without the formation of
undulating membrane, its posterior part is
used for attachment to host epithelium;
conspicuous ventral furrow; phagotrophic
with well-developed but miniaturized
cytopharynx in most species; subpellicu-
lar microtubules extend to whole-cell length;
pro- or pankinetoplastic [81,164] (plate A, 16).

Type species: Cryptobia helicis Leidy, 1846.
Note: The genus may be paraphyletic with

respect to Parabodo as judged by sequence
data on two species from invertebrates and
fish, although the relationships are poorly
resolved [190].

▪ GenusParabodoSkuja, 1939 emend.Vickerman,
2004. Free-living, solitary; posterior flagellum
free; the cytostome is placed at the anterior
end of the cell making the latter bifurcate,
well-developed cytopharynx; subpellicular
microtubules extend to whole-cell length; pro-
kinetoplastic [191,192] (plate A, 13).

Type species:Parabodo nitrophilus Skuja, 1939.

▪ Family Trypanoplasmatidae Hartmann and Chagas,
1910 emend. Kostygov. The clade uniting the
genera Procryptobia and Trypanoplasma based on 18S
rRNA gene phylogenies [68,188].

▪ Genus Procryptobia Vickerman, 1978. Soli-
tary, free-living, prokinetoplastic; recurrent
flagellum attached to the cell surface, ventral
groove absent; short anterolateral rostrum;
cell bears subpellicular microtubules only
in the anterior portion and easily changes
shape; phagotrophic [52,193] (plate A, 12).

Type species: Procryptobia voraxVickerman,
1978.

▪ Genus Trypanoplasma Laveran and Mesnil,
1901. Leech-transmitted obligate hemopara-
sites of fish; posterior flagellum attached to
the cell body forming a conspicuous undu-
lating membrane bordering a ventral
furrow; osmotrophic, cytopharynx reduced;
subpellicular microtubules extend to whole-
cell length; megakinetoplast [66,164].

Type species: Trypanoplasma borreli
Laveran and Mesnil, 1901 (plate A, 15).

○ Order Trypanosomatida Kent, 1880. Monoxenous or dix-
enous obligatory endoparasites of arthropods, leeches,
vertebrates, plants and ciliates; single flagellum, emerging
from flagellar pocket apicallyor laterally, ismastigoneme-
free and oriented anteriorly; eukinetoplastic with the
kDNA network attached to the basal body of the flagel-
lum [194]; phagotrophic or osmotrophic; cytostome–
cytopharyngeal complex fully developed only in a few
representatives, while the majority has no cytopharynx,
and cytostome is present as a shallow pit or completely
absent [195,196]. For a long time, the classification was
based on the presence of the following morphotypes
in the cell cycle: promastigote (elongated with apical
flagellum and prenuclear kinetoplast), choanomastigote
(shortened, with apical flagellum and prenuclear
kinetoplast), opisthomastigote (elongated,with apical fla-
gellum and postnuclear kinetoplast), opisthomorph
(shortened,with apical flagellum and postnuclear kineto-
plast), epimastigote (with lateral flagellum attached to the
cell body and prenuclear kinetoplast), trypomastigote
(with lateral flagellum attached to the cell body and
postnuclear kinetoplast), amastigote/endomastigote (fla-
gellum not emerging from the pocket, the first variant
predominantly used when flagellum is very short) and
cyst-like amastigote (compact cells with dense cytoplasm,
completely lacking flagellum). Single family. The taxo-
nomic changes introduced here follow the guidelines
specified for this group previously [197].
▪ Family Trypanosomatidae Doflein, 1901. With the
same definition as the order (tree C).

Note: Historically, all monoxenous genera were
often termed ‘lower trypanosomatids’, but after the
switch to the phylogeny-oriented paradigm, this con-
cept has been abandoned [92]. As an alternative, a
colocation ‘insect trypanosomatids’, which has no
evolutionary connotations, is often used.

▪ Subfamily Trypanosomatinae Doflein,
1901. A distinct clade on phylogenetic
trees is based on 18S rRNA, gGAPDH and
multiple protein-coding genes enclosing
the genus Trypanosoma [10]. Single genus.

Genus Trypanosoma Gruby, 1843. Dixenous parasites of
all classes of vertebrates (in blood and tissues) transmitted
by blood-sucking arthropods or leeches (digestive tract
and salivary glands); trypomastigotes and amastigotes
(in vertebrates) or epimastigotes and trypomastigotes (in
invertebrates) (plates B and C, 18–40) (tree D).

Type species: Trypanosoma sanguinis Gruby, 1843 ( junior
subjective synonym of T. rotatorium (Mayer, 1843)).

Note: Historically, mammalian trypanosomes were
subdivided into the sections Stercoraria (Herpetosoma,
Megatrypanum and Schizotrypanum) and Salivaria (Duttonella,
Nannomonas, Pycnomonas and Trypanozoon). Being long-
established and of practical importance for the community of
medical and veterinary doctors, this mammalian-centred
classification is incorrect from the phylogenetic point of view
(see Biology of Kinetoplastea), as it not only does not



Tree C. Trypanosomatidae. A tree summarizing multiple phylogenetic reconstructions, mostly 18S rRNA gene-based. Dashed line denotes an unstable clade, which is
disrupted when certain taxa are included into the analysis. For the genus Leishmania, relationships between its four subgenera are also shown. Highlighting denotes
types of the life cycles (see graphical legend).
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correspondwith the known diversity of trypanosomes but also
cannot accommodate species transmitted by other modes.
Moreover, mammalian trypanosomes are not monophyletic
and the names stercoraria and salivaria, which were proposed
to reflect thedifferences between themodes of transmission, are
non-taxonomical and have only historical value.

In parallel, the genus Trypanosomawas divided into several
subgenera based on rather subtle morphological differences.
Interestingly, this historical taxonomical classification in gen-
eral corresponds well with the current phylogenetic analysis.
However, despite the indisputable usefulness of this classifi-
cation, in recent decades, the usage of subgenera was largely
omitted (probably because of anticipated—but not materia-
lized—conflicts between the morphology- and phylogeny-
based systems). As a consequence, newly emerging clades in
the expanding phylogenetic trees were named after the best-
known representatives, causing confusion. Here, we revive
the original subgeneric concept, and by erecting several new
subgenera achieve mutual harmonization of the old morpho-
logical and the modern phylogenetic approaches. We believe
that this taxonomical system reflects best the true diversity of
these important parasites.

Species for which only morphological but no sequence
information is available are marked with an asterisk (*). We
have mapped the hosts (classes of vertebrates) onto the phy-
logenetic trees, highlighting associations among clades and
their vertebrate host.

• ‘the aquatic clade’ (monophyletic) (plate B, 18–23).
Note: Molecular phylogenies confirmed the monophyly

of the genus Trypanosoma [198] and its subdivision into
the aquatic and terrestrial clades [199–201]. In most
reconstructions, the aquatic clade was further split into
the ‘fish/turtle’ and ‘amphibian’ subgroups. While the
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former was invariably monophyletic, depending on the
taxonomic set used, the latter appeared either as mono-
phyletic or unresolved until an analysis including some
key frog species demonstrated its clear paraphyly
[202–204]. The ‘fish/turtle’ subgroup, which also includes
trypanosomes from a platypus (T. binneyi Mackerras,
1959) and a crocodile (T. clandestinus Teixeira and
Camargo, 2015) is here designated as the subgenus
Haematomonas. The remaining aquatic trypanosomes,
mostly parasitizing frogs (with T. therezieni Brygoo, 1963
infecting chameleons being a single known exception),
fall into the paraphyletic subgenus Trypanosoma.
▪ Subgenus Haematomonas Mitrophanow, 1883 emend.
Votýpka and Kostygov. Diagnosis: Leech-transmitted
parasites of aquatic vertebrates. Morphologically vari-
able medium to large conspicuously elongated
trypomastigotes with a notably bent body, undulating
membrane including free flagellum, and with the kine-
toplast situated close to the posterior end of the body.
Defined by 18S rRNA-based phylogenetic analyses.

Type species: Haematomonas cobitis Mitrophanow,
1883 (= Trypanosoma cobitis).

Note: Mitrophanow described two monoflagellates
from the European freshwater fish and placed them
into the new genus Haematomonas as H. cobitis (from a
weatherfish, Misgurnus fossilis; formerly genus Cobitis)
and H. carassii (from a crucian carp, Carassius carassius)
which were both later reclassified into the genus Trypa-
nosoma [205]. Since then, more than 190 trypanosome
species have been described from both marine and
freshwater jawless, cartilaginous and bony fish world-
wide [206]. Phylogenetic analyses [202,204,207,208]
revealed three monophyletic clades within this subge-
nus: (i) freshwater fish trypanosomes (including
T. clandestinus Teixeira and Camargo, 2016 from croco-
diles); (ii) marine fish trypanosomes (including T. rajae
Laveran and Mesnil, 1902 from rays); (iii) turtle trypano-
somes (including T. binneyi from a platypus). The
following species are included in published phyloge-
netic trees: T. abeli, T. binneyi, T. boissoni, T. cobitis,
T. chelodinae, T. clandestinus, T. epinepheli, T. fulvidraco,
T. granulosum, T. mocambicum, T. murmanensis, T. nudigo-
bii, T. ophiocephali, T. pleuronectidium, T. pseudobagri,
T. rajae, T. sinipercae and T. triglae.

▪ Subgenus Trypanosoma Gruby, 1843 emend. Votýpka
and Kostygov.

Diagnosis: Morphologically variable medium to
large trypomastigotes characterized by a wide range
of forms with remarkable morphological plasticity;
besides classical fusiform trypomastigotes, there are
rounded, oval, claviform, fan-shaped, leaf-like, or
irregular cells with or without a free flagellum, and
longitudinal or spiral striations. Defined by 18S
rRNA-based phylogenetic analyses.

Type species: Trypanosoma sanguinis Gruby, 1843
( junior subjective synonym of T. rotatorium [209]).

Note: Mayer in 1843 found in the blood of a frog
(Rana esculenta) captured in Germany two organisms
that he named Amoeba rotatoria and Paramaecium
loricatum, which were later recognized as first-ever
described trypanosomes [209]. Gruby published later
the same year a description of a haemoflagellate from
the blood of a frog in France and named it Trypanosoma
sanguinis (from Greek trypanon, an auger; soma,
body) [210]. In 1901, Doflein created the family Trypa-
nosomidae, in which the genus Trypanosoma was
subdivided into three subgenera including the nomino-
typical one—Trypanosoma with T. sanguinis Gruby 1843
as a type [205]. In 1926, International Commission on
Zoological Nomenclature accepted T. rotatorium Mayer
1843 as the senior synonym of T. sanguinis Gruby
1843 [211].

The following described species are included in
published phylogenetic trees: T. chattoni, T. fallisi,
T. herthameyeri, T. loricatum, T. mega, T. neveulemairei,
T. percae, T. ranarum, T. rotatorium, T. therezieni and
T. tungarae.

• ‘the terrestrial clade’ (monophyletic) (plate C, 24–40).
Note: The internal classification of trypanosomes from

terrestrial hosts is rather confusing. Mammalian trypano-
somes, subdivided into the sections stercoraria and
salivaria, were mostly singled out, followed by the avian
trypanosome branch(es). Additionally, new clades
appeared gradually in phylogenetic studies, the inclusion
of which is a significant problem. Moreover, these above-
mentioned groups are not monophyletic, making the
internal system of the terrestrial clade unstable. We have
attempted to rectify the situation by building a system
that accommodates taxonomic units, for which sequence
information is available.
○ avian subgenera (paraphyletic)

Based on comparative morphology and developmental
cycles, avian trypanosomes were hypothesized to be
closely related to the subgenus Megatrypanum that
infects ruminants [212,213]. This assumption is now
supported by phylogenetic and phylogenomic studies
that have also shown paraphyly of avian trypanosomes,
represented by at least three distinct lineages (T. avium,
T. corvi and T. bennetti clades) [144,214,215]. These
groups are distinguishable by the morphology of blood-
stream stages and the kinetoplast thickness [216,217].
▪ Subgenus Trypanomorpha Woodcock, 1906 emend.
Votýpka
Diagnosis: Medium to large size trypomastigotes

(40–100 μm) with longitudinal striations (myo-
nemes), central oval nucleus, prominent undulating
membrane and small kinetoplast to which the free
flagellum is anterior. Cells in culture have kineto-
plast exceptionally thick (greater than 500 nm).
Defined by 18S rRNA-based phylogenetic analyses;
cosmopolitan distribution.
Type species: Trypanosoma noctuae Schaudinn,

1904 ( junior subjective synonym of T. avium Dani-
lewsky, 1885, see note).
Note: For the type species described from a Euro-

pean little owl Athene noctua [218], neither culture
nor sequence data are available. Both exist for T. tho-
masbancrofti Šlapeta, 2016 and also for less clearly
defined T. avium Danilewsky, 1885 and T. gallinarum
Bruce et al., 1911 [214–217,219]. The vaguely defined
species Trypanosoma avium was described in 1885 by
Danilewsky from birds, but the type material was
not preserved [220]. In 1903, Laveran proposed to
restrict this species name to parasites of owls [221];
however, the name was often used to designate
any bird trypanosome.



Tree D. Trypanosoma. A tree summarizing multiple phylogenetic reconstructions, mostly 18S rRNA gene-based. All species or a selection of the most important ones
(marked with three dots at the end), for which affiliation with a given subgenus and/or clade was confirmed using molecular phylogenetic methods, are listed.
Highlighting denotes orders of vertebrate hosts (see graphical legend). Human parasites are underlined. Type species are shown in bold and the names accepted as
senior subjective synonyms are marked with an asterisk.
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▪ Subgenus Avitrypanum Votýpka, subgen. nov.
Diagnosis: Medium to large trypomastigotes

(about 40–80 μm) in the bloodstream of bird hosts
with longitudinal striations (myonemes), nucleus
positioned centrally and posterior kinetoplast; the
thickness of kinetoplast in cultured cells is less
than 500 nm. Defined by 18S rRNA-based phyloge-
nies; cosmopolitan distribution.
Type species: Trypanosoma corvi Stephens and

Christophers, 1908, here designated.
Etymology: The generic name refers to the fact

that trypanosomes come from bird hosts, the order
Aves (the Latin name for a bird is avis).
Note: Baker [222] emended T. corvi and restricted

the use of the name to large trypanosomes from non-
American corvids and also from other bird families.
The species was re-described [223] and phylogeneti-
cally characterized [214] and forms the T. corvi clade
along with T. culicavium Votýpka et al., 2012.
Although morphologically indistinguishable from
the subgenus Trypanomorpha (T. avium clade), Avio-
trypanum (T. corvi clade) is not directly related to it
[144,216,217], justifying separate treatment.

▪ Subgenus Ornithotrypanum Votýpka, subgen. nov.
Diagnosis: Small to medium-size non-striated
avian trypanosomes (less than 40 µm in length)
with kinetoplast situated close to the posterior end
of the body. Kinetoplast thickness of cells in culture
below 500 nm. Defined by 18S rRNA-based
phylogenetic analyses; cosmopolitan distribution.
Type species: Trypanosoma bennetti Kirkpatrick,

Terway-Thompson and Iyengar, 1986, here desig-
nated.
Etymology: The generic name refers to the fact that

trypanosomes come from bird hosts, the order Aves
(the ancient Greek name for a bird is órnῑs; ὄρνῑς).
Note:Out of a numberofmorphologically described

species parasitizing wild birds, for five of them
(T. anguiformis Valkiūnas et al., 2011, T. bennetti,
T. everetti Molyneux, 1973, T. naviformis Sehgal et al.,
2015 and T. polygranularis Valkiunas et al., 2011)
sequence data are available [144,224,225]. Their diver-
gence justifies the establishment of a new subgenus—
Ornithotrypanum.
Phylogenomic approach revealed that the T. bennetti

(=Ornithotrypanum) and T. avium (= Trypanomorpha)
clades are nested within the mammalian clade and
are paraphyletic with respect to the ruminants-infect-
ing Trypanosoma theileri Laveran, 1902 [144], thus
breaking the monophyly of mammalian
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trypanosomes. Interestingly, the host generalism of
avian trypanosomes contrasts with the host specificity
observed for some mammalian flagellates.

○ ‘mammalian subgenera (stercoraria)’ (polyphyletic)
▪ Subgenus Herpetosoma Doflein, 1901.

Diagnosis: Medium-size trypomastigotes (20–
40 µm) with long pointed posterior extremity, large
rod-like subterminal kinetoplast but well away
from the posterior end and long free flagellum. Para-
sitizing a wide range of rodents and lagomorphs, as
amastigote and/or epimastigotes.
Type species: Herpetosoma lewisi Kent, 1880 (= Try-

panosoma lewisi).
Note: This globally distributed species found in

more than 100 rodent species (predominantly Rattus
spp.) and rarely also in humans [226], is transmitted
by the ingestion of fleas Xenopsylla cheopis and Nosop-
syllus fasciatus or in their faeces. Considered largely
non-pathogenic for rodents, it can cause serious dis-
ease in unnatural hosts. After its introduction in
synanthropic rats to Christmas Island, it drove the
endemic rat Rattus macleari to extinction, being the
only known cases of a trypanosomatid responsible
for the extinction of its host species.
Molecular phylogenies revealed the polyphyly of

Herpetosoma [143,227–229], excluding T. rangeli
Tejera, 1920 into a newly established subgenusTejeraia
(now Aneza), keeping Herpetosoma (also named T.
lewisi-like clade) monophyletic. 18S rRNA sequences
are available for the following species: T. niviventerae
(rat, Niviventer confusianus), T. musculi (mouse, Mus
musculus/domesticus), T. grosi (field mouse, Apodemus
spp.), T. microti (vole,Microtus spp.),T. evotomys (bank
vole, Clethrionomys glareolus), T. rabinowitschae
(hamster, Cricetus cricetus), T. blanchardi (dormouse,
Eliomys quercinus), T. kuseli (squirrel, Pteromys
volans), T. ostospermophili (squirrel, Urocitellus spp.)
and T. nabiasi (rabbit, Oryctolagus cuniculis), while
molecular data are not available for approximately
30 more species, including *T. acomys, *T. acouchii,
*T. ellobii and *T. lemmi.
Thequestionswhether threephylogenetically related

species withMegatrypanum-likemorphology and basal
phylogenetic position, T. talpae (European mole, Talpa
europaea), T. sapaensis (white-toothed shrew, Crocidura
dracula) and T. anourosoricus (mole shrew, Anourosorex
yamashinai) should be included into the subgenus
Herpetosoma remains unresolved [230].

▪ Subgenus Megatrypanum Hoare, 1964
Diagnosis: Large trypomastigotes (40–100 µm)

with long pointed posterior extremity; medium non-
terminal kinetoplast located near the nucleus and
far from the posterior end of the body; long free
flagellum; reproduction as epimastigotes in the
mammalian host.
Type species: Trypanosoma theileri Laveran, 1902;

a cosmopolitan non-pathogenic bovine trypanosome
transmitted by tabanids.
Note: Other members are ovine T. melophagium

Flu, 1908 using a sheep ked (Melophagus ovinus) as
a vector, while caprine *T. theodori Hoare, 1931 is
transmitted by a goat ked (Lipoptena capreoli). Two
species of cervid trypanosomes, European and
North American T. cervi Kingston and Morton,
1975 and newly described Pan-American
T. trinaperronei Teixeira, Camargo and García, 2020,
are transmitted by deer keds (Lipoptena cervi and
L. mazamae) [231]. Tabanids probably transmit
*T. stefanskii Kingston et al., 1992 from a roe deer
(Capreolus capreolus) [232] and *T. ingens Bruce
et al., 1909 from African antelopes [233]. Vectors
remain unknown for the closely related simian
T. cyclops Weinman, 1972 and *T. lucknowi Weinman,
White and Antipa, 1984 from Macaca monkeys.
Morphological [234,235] and phylogenetic studies
[199,236] justify inclusion of these two species into
the subgenus Megatrypanum.

Note: Probably least settled within the former stercor-
aria is the taxonomy within the so-called T. cruzi
superclade. Its members have been hypothesized to pri-
marily be parasites of bats (Chiroptera), from which
they have expanded into other mammals. Two species,
T. cruzi Chagas, 1909 and T. rangeli, both restricted to
the New World, are capable of infecting humans. The
majority of known invertebrate vectors of these trypa-
nosomes belong to true bugs (Heteroptera). The
T. cruzi superclade incorporates two subgenera: Schizo-
trypanum and Aneza, as well as several (un)named
clades and species complexes [237–239].
Trypanosoma wauwau Lima et al., 2015 from Pteronotus
bats in South America constitutes a potentially novel
subgenus, now termed the T. wauwau clade. Other
members of this clade are unnamed species from the
Neotropical bats, T. janseni Lopes et al., 2018 from
inner organs of a Brazilian opossum Didelphis aurita,
and T. madeirae Battos et al., 2019 from a Neotropical
vampire Desmodus rotundus. The other two candidate
subclades are represented by Trypanosoma noyesi
Botero and Cooper, 2016 found in Australian marsu-
pials (woylie, wallabies, kangaroos and possums) and
the genetically highly diverse (a complex of species)
infecting various African bats with the only described
member, Trypanosoma livingstonei Teixeira and
Camargo, 2013.
▪ Subgenus Schizotrypanum Chagas, 1909

Diagnosis: Relatively small trypomastigotes
(15–25 μm), typically C- or S-shaped in blood
smears with short pointed posterior extremity, a
large subterminal kinetoplast and long free flagel-
lum. In mammals, reproduction takes place in
form of the intracellular amastigotes.
Type species: Trypanosoma cruziChagas, 1909; a causa-
tive agent ofChagasdisease inhumans, transmittedby
triatomine bugs (e.g. Triatoma, Rhodnius) [240].
Note: Trypanosoma cruzi (also known as T. cruzi cruzi or
T. cruzi sensu stricto) has averyhighmolecularandphe-
notypic heterogeneity, reflected by the existence of
seven genetically distinct lineages (or discrete typing
units, DTUs) termed TcI–TcVI and Tcbat [241]. An
impartial comparison of this conspicuous genetic
diversity, which corresponds very well with life
cycles, clinical manifestations and host specificity,
with the situation of the T. brucei complex, reveals a
striking and untenable discrepancy between these
two key species complexes. While in the T. brucei com-
plex, five DTUs have the status of five different



royalsocietypublishing.org/journal/rsob
Open

Biol.11:200407

16
(sub)species (see below), theT. cruzi complex has so far
not been split into subspecies and sticks to the DTU
code. Therefore, we propose that the same system,
basedonsubspecies, shouldbeapplied forbothspecies
complexes. We urge our colleagues working with
T. cruzi to implement such a system.
The currentT. cruzi complex isaccompaniedby three

(sub)species from bats with typical Schizotrypanum
morphology: T. marinkellei Baker et al., 1978 (restricted
to South America), T. dionisii Bettencourt and França,
1905 (occurring in the Old and New World) and
T. erneyi Lima and Teixeira, 2012 (found in Africa).

▪ Subgenus Aneza Özdikmen, 2009 (= Tejeraia Añez,
1982 [preoccupied]).
Diagnosis: Small to medium-size trypomastigotes

(25–35 µm) with long pointed posterior extremity,
medium subterminal kinetoplast and long free flagel-
lum, are all similar to the subgenus Herpetosoma. At
least, some species (e.g. T. rangeli) produce metacyclic
stages in the salivary glands of its triatomine bug vec-
tors, and therefore are not strictly speaking
stercorarians (although transmission via faeces also
occurs).
Type species: Trypanosoma rangeli Tejera, 1920.
Note:T. rangeli is restricted to SouthAmerica andhas

a wide mammalian host range including humans, for
which it is non-pathogenic; the only known vectors
are triatomine bugs of the genus Rhodnius. While
anothermemberof the subgenus,T. conorhiniDonovan,
1909, is found worldwide in rats and Indonesian pri-
mates and is transmitted by triatomine bug T.
vespertilionis Edmond and Etienne Sergent, 1905 infect-
ing bats is widely distributed in Africa and Europe,
where it is transmitted by Cimex spp. Sequence data
are also available for T. teixeirae Barbosa et al., 2016
found in the blood of Australian flying foxes.

○ ‘mammalian subgenera (salivaria)’ (monophyletic)
▪ Subgenus Duttonella Chalmers, 1908

Diagnosis: Small to medium-size trypomastigotes
(21–26 µm) with large and usually terminal kineto-
plast, small to rounded posterior extremity and
long free flagellum. Development in the insect
vector is confined to the proboscis and the adjacent
cibarial pump.
Type species: Trypanosoma vivax Ziemann, 1905; a

causative agent of souma in cattle and other ungu-
lates in Africa and South America (following its
import from western Africa).
Note:Althoughonlyonedescribed species has been

formally assigned to this subgenus, phylogenetic ana-
lyses revealed a complex of species related to T. vivax
[242]. Previously described *T. uniforme Bruce et al.,
1911 and *T. vivax ellipsiprymni Keymer, 1969, termed
‘T. vivax-like’ may be a part of this complex.

▪ Subgenus Nannomonas Hoare, 1964
Diagnosis: Small trypomastigotes (12–20 μm) with

medium-sized subterminal marginal kinetoplast,
blunt posterior extremity and free flagellum either
absent or very short. Vector development takes
place in the midgut and proboscis.
Type species: Trypanosoma congolense Broden,

1904; a causative agent of nagana in cattle and
other ungulates.
Note: T. congolense is further split into three types/
‘subspecies’ (Savannah, Forest and Kilifi) that are,
arguably, sufficiently different to warrant species
status due to different virulency for domestic ani-
mals. Other species infect ungulates and monkeys
(T. simiae Bruce et al., 1909 which is represented by
two ‘good’ species) or were detected in tsetse flies
like T. godfreyi McNamara, Mohammed and
Gibson, 1994 and several unnamed species [243,244].

▪ Subgenus Pycnomonas Hoare, 1964
Diagnosis: Small trypomastigotes (8–20 µm) with

very short pointed posterior extremity, small sub-
terminal kinetoplast and short free flagellum.
Vector development takes place in the midgut and
salivary glands of tsetse flies (Glossina spp.).
Type species: Trypanosoma suis Ochmann, 1905; a

causative agent of chronic porcine trypanosomiasis,
infects Suidae in sub-Saharan Africa.
Note: Although this subgenus contains only one

described species, two unnamed species were
found in tsetse flies [243] and in a wide variety of
domestic and free-living ungulates [244].

▪ Subgenus Trypanozoon Lühe, 1906
Diagnosis: Pleomorphic trypomastigotes rep-

resented by long slender (mean length 30 μm) with
long free flagellum and short stumpy forms (mean
length 18 µm) with no free flagellum; both have a
small subterminal kinetoplast.
Type species: Trypanosoma brucei Plimmer and

Bradford, 1899.
Note: According to the life cycle, transmission

mode, vectors, vertebrate hosts and clinical manifes-
tations, five (sub)species are recognized and widely
accepted: Trypanosoma brucei brucei (in ungulates,
the causative agent of nagana in cattle; transmitted
by tsetse that restrict its distribution to sub-Saharan
Africa), T. brucei rhodesiense (causative agent of acute
sleeping sickness in humans; game animals and live-
stock are primary reservoir; vectored by tsetse, sub-
Saharan Africa), T. brucei gambiense (chronic sleeping
sickness in humans; some domestic animals are
reservoir; vectored by tsetse, sub-Saharan Africa),
T. brucei evansi (causative agent of trypanosomiasis
in camels, horses, cattle, buffalo, dogs and pigs,
called surra in Africa and Asia and murrina in South
America; transmitted mechanically by blood-sucking
insects and vampires) and T. brucei equiperdum
(causes dourine in horses inAsia, Africa, SouthAmer-
ica and Europe; transmitted sexually). The latter two
subspecies are closely related and are unique in
being so-called petite mutants of T. brucei [145].

○ ‘other terrestrial subgenera’ (paraphyletic)
▪ Subgenus Australotrypanum Votýpka and Kostygov,
subgen. nov.
Diagnosis: Morphologically highly variable trypo-

mastigotes in the blood of marsupials and bats in
Australia. Defined by 18S rRNA-based phylogenetic
analyses.
Type species: Trypanosoma copemani Austen, Jeff-

eries, Friend, Ryan, Adams and Reid, 2009, here
designated.
Etymology: The generic name refers to the origin

from Australian mammals.
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Note: A distinct monophyletic clade composed of
T. copemani, T. gillettiMcInnes et al., 2011, and T. vegran-
disThompson et al., 2013 that infectmarsupials andbats
(in case ofT. copemani) [245–248]. Theyseem tobe trans-
mitted by ticks [249] and have been implicated in the
decreased survival of koalas (Phascolarctos cinereus)
[248]. T. copemani exhibits polymorphic ‘slender’ and
‘broad’ trypomastigote stages in the bloodstream
[245] and intracellularamastigotes [250]. Sphaeromasti-
gotes, amastigotes and promastigotes were present in
vitro. On the other hand, T. vegrandis is believed to be
the smallest species formallydescribed frommammals,
with trypomastigotes below 10 μmof length [247]. Try-
panosoma gilletti, described from koalas based on 18S
rRNA sequences only, is 50 µm long [246].

▪ Subgenus Crocotrypanum Votýpka and Kostygov,
subgen. nov.
Diagnosis: Large striated trypomastigotes (up to

100 µm) occurring in very small numbers in peripheral
blood of crocodiles and caimans in the Neotropic and
Afrotropic. The conspicuous undulating membrane
forms a well-marked frill along the edge of the cell
and continues to free flagellum. In tsetse flies (Glossina)
andhorse flies (Tabanidae), epimastigotes andpromas-
tigotes develop in the midgut and hindgut;
transmission occurs via contaminative way. Defined
by 18S rRNA-based phylogenetic analyses.
Type species: Trypanosoma grayi Novy, 1906, here

designated.
Etymology: The generic name refers to the fact that

trypanosomes come fromhosts of the order Crocodilia.
Note: T. grayi transmitted by tsetse [251–253] clusters

together with three recently described species, T. terena
Teixeira and Camargo, 2013, T. ralphi Teixeira and
Camargo, 2013 and T. kaiowa Teixeira and Camargo,
2019 transmitted by insect vectors [254,255], into a
strongly supported monophyletic clade [255]. Based
on morphology, *T. cecili Lainson, 1977 could also
belong to this subgenus. All described crocodilian try-
panosomes form the monophyletic crocodilian clade
(subgenus Crocotrypanum) of the terrestrial lineage
and are transmittedby insect vectors.Trypanosoma clan-
destinus Teixeira and Camargo, 2016, transmitted
among caimans by leeches, is not related to this
group and is nested within the aquatic lineage (subge-
nus Haematomonas) [255].

▪ Subgenus Squamatrypanum Votýpka and Kostygov,
subgen. nov.
Diagnosis: Morphologically variable medium to

large-sized trypomastigotes with multi-folded
undulating membrane including free flagellum and
kinetoplast located near the nucleus. Defined by
18S rRNA-based phylogenetic analyses.
Type species: Trypanosoma scelopori Ayala, 1970,

here designated.
Etymology: The unusual combination of hosts (see

below) was used for the subgenus name combining
the Latin name of reptiles (Squamata) and mammals
(Mammalia).
Note: This clade brings together trypanosomes from

diverse hosts, namely lizards, snakes, rodents andmar-
supials. Based on their morphology, T. lainsoni Naiff
and Barrett, 2013 from rodents and T. freitasi Rêgo,
Magalhães and Siqueira, 1957 from marsupials used
to belong to the subgenus Megatrypanum; however,
this taxonomic classification does not reflect their phy-
logenetic position. While T. varani Wenyon, 1908
described fromaNilemonitor lizard (Varanus niloticus)
in Sudan [256] and later found in a Ghanaian ball
python (Python reginus) [257] represents the only Afro-
tropical species, other three species within this
subgenus were described in American reptiles:
T. serpentis Viola et al., 2009 from Brazilian snake
Pseudoboa nigra [258], T. scelopori Ayala, 1970 from
North American western fence lizard (Sceloporus occi-
dentalis) [259] and T. cascavelli Pessôa and Da Biasi,
1971 froma SouthAmerican rattlesnake (Crotalus duris-
sus) [260]. The latter species also survives in thebloodof
Neotropical marsupials [261]. T. freitasi and T. gennarii
Marcili, 2017, were described from Didelphis and
Monodelphis opossums, respectively [262,263], yet
their host spectrum is even broader [261]. Finally,
T. lainsoni, originally described from Amazonian
rodents [264], can infect South American marsupials
and bats [261].

○ ‘incertae sedis species’
Note: Three species—Trypanosoma irwini McInnes
et al., 2009, T. pestanai Bettencourt and Franca, 1905
and T. terrestris Marcili, 2013—do not fall into any of
the above-listed subgenera and constitute separate
branches.
Trypanosoma irwini from Australian koala (Phascolarc-
tos cinereus), with middle-sized (approx. 40 µm)
trypomastigotes with prominent kinetoplast, undulat-
ing membrane, pointed posterior end and long
free flagellum [265], is closely related to the avian
trypanosomes of the subgenus Ornithotrypanum
[265,266].
Trypanosoma pestanai from Eurasian badgers was, based
on morphology (middle-sized trypomastigotes approx.
35 µm long, subterminal kinetoplast) [267,268], associ-
ated with the subgenusMegatrypanum, yet phylogenetic
analyses indicate its affiliation rather with the subgenus
Australotrypanum [266,269].
Finally, T. terrestris infecting South American lowland
tapir (Perissodactyla) is not closely related to any
subgenera [270].
▪ Subfamily Leishmaniinae Maslov and Lukeš, 2012.
Group identified by 18S rRNA and GAPDH gene-
based phylogenies. Includes the monoxenous genera
Borovskyia, Crithidia, Leptomonas, Lotmaria, Novymonas
and Zelonia, as well as the dixenous genera Endotrypa-
num, Porcisia and Leishmania [271].
○ Infrafamily Crithidiatae Kostygov and Yurch-

enko, 2017. The clade comprises genera Crithidia,
Leptomonas and Lotmaria, which currently cannot
be reliably separated from each other [271].
▪ Genus Leptomonas Kent, 1880. Parasites of the
gut of invertebrates; promastigotes as the only
motile form [94] (plate D, 42).

Type species: Leptomonas butschlii Kent, 1880.
Note: The type species parasitizes nematodes

and does not belong to Trypanosomatidae [97],
all other species are parasites of insects [91].

▪ Genus Crithidia Léger, 1902. Parasites of the
gut of insects (dipterans, heteropterans,



Plate D. Trypanosomatids other than Trypanosoma. Light micrographs of Giemsa-stained (41) Crithidia thermophila (culture) (42) Leptomonas seymouri (culture); (43) Lotmaria
passim (culture); (44) Novymonas esmeraldas (culture); (45) Zelonia costaricensis (culture); (46) Porcisia hertigi (culture) (provided by Jovana Sádlová); (47) Endotrypanum sp. ex
sloth; (48) Endotrypanum monterogeii (culture); (49) Leishmania major, metacyclic promastigote (culture) (provided by JS); (50) L. major, amastigotes in a macrophage (pro-
vided by Tereza Leštinová); (51) Herpetomonas nabiculae, promastigote (culture) (provided by Marina N. Malysheva and Alexander O. Frolov); (52) H. nabiculae, opistomastigote
(provided by Marina N. Malysheva and Alaxander O. Frolov); (53) Phytomonas lipae, promastigote ex Coreus marginatus (provided by Marina N. Malysheva and Alaxander
O. Frolov); (54) P. lipae, endomastigotes ex C. marginatus (provided by Marina N. Malysheva and Alaxander O. Frolov); (55) Lafontella sp. (culture); (56) Angomonas deanei
(culture) (provided by Anna I. Ganyukova); (57) Kentomonas sorsogonicus (culture); (58) Strigomonas oncopelti (culture); (59) Sergeia podlipaevi (culture); (60) Jaenimonas
drosophilae (culture); (61) Wallacemonas collosoma (culture); (62) Paratrypanosoma confusum (culture); (63) Blastocrithidia frustrata (culture); (64) Obscuromonas oborniki
(culture); (65) Vickermania ingenoplastis (culture); (66) Blechomonas englundi (culture). Scale bar, 5 µm (41–43, 56, 57); 10 µm (44–55, 58–66).
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hymenopterans); choanomastigotes as the only
motile form [94] (plate D, 41).

Type species: Crithidia fasciculata Léger, 1902.
▪ Genus Lotmaria Evans and Schwarz, 2014. The
clade comprising Lotmaria passim and related
species, based on the concatenation of 18S
rRNA and gGAPDH genes; promastigotes in
the gut of bees [272] (plate D, 43).

Type species: Lotmaria passim Schwarz, 2014.
Monotypic (see note).

Note: Only the type species is currently
assigned to this genus. The referred tree top-
ology is strongly gGAPDH-dependent, prone
to artefacts due to compositional bias in nucleo-
tide sequences of this gene [103,273–275].

○ Infrafamily Leishmaniatae Maslov and Lukeš,
2012. Comprises the dixenous genera of the sub-
family along with Novymonas, Zelonia and
Borovskyia [271].
▪ Genus LeishmaniaRoss, 1903. Dixenous parasites of
mammals and reptiles infecting cells of the mono-
nuclear phagocyte system, where they multiply as
amastigotes. Widely distributed in tropical and
subtropical regions. In mammals, depending on
the preferred type(s) of phagocytes, they cause
different clinical forms of the disease: cutaneous,
mucocutaneous and visceral. Transmitted predo-
minantly by phlebotomine sandflies (Diptera:
Psychodidae: Phlebotominae), in whose gut they
develop as promastigotes [127] (plate D, 49,50).

Type species: Piroplasma donovani Laveran and
Mesnil, 1903 (= Leishmania donovani).
• Subgenus Leishmania Ross, 1903. Cause

cutaneous and visceral forms of leishmaniasis
in mammals. Distributed in Africa, Eurasia
and Americas. Transmitted by sandflies, in
which they develop in the midgut [127].

Type species: same as for the genus.
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• Subgenus Viannia Lainson and Shaw, 1987.
Cause cutaneous and mucocutaneous forms
of leishmaniasis in mammals; restricted to
South America; transmitted by sandflies, in
which they develop in the midgut and hind-
gut [127].

Type species: Leishmania braziliensis Vianna,
1911.

• SubgenusSauroleishmaniaRanque, 1973. Live in
the blood cells of lizards and snakes, predomi-
nantly in the mononuclear phagocyte system,
but reported also from erythrocytes and throm-
bocytes [276]. Transmitted by sandflies, in
which they develop in the hindgut [127].

Type species: Leishmania tarentolae Wenyon,
1920.

• Subgenus Mundinia Shaw, Camargo and Teix-
eira, 2016. Cause cutaneous and visceral
leishmaniases in mammals [125,277];
recorded on all continents except Antarctica;
transmitted by biting midges [126,278].

Type species: Leishmania enriettii Muniz and
Medina, 1948.

▪ Genus Porcisia Shaw, Camargo and Teixeira,
2016. Leishmania-like dixenous flagellates parasi-
tizing skin and visceral organs of porcupines as
intracellular amastigotes; transmitted by phlebo-
tomine sand flies as promastigotes [125,279,280]
(plate D, 46).

Type species: Leishmania hertigi Herrer, 1971
(= Porcisia hertigi).

▪ Genus Endotrypanum Mesnil and Brimont, 1908.
May represent a mixture of two distinct dixenous
taxa, one of which is defined morphologically
(intraerythrocytic trypomastigotes and/or epimas-
tigotes in sloths) and another phylogenetically
(Leishmania-like flagellates related to former
L. herreri and parasitizing skin and visceral organs
of various mammals as amastigotes [125,271,281].
The latter is transmitted by phlebotomine sand
flies as promastigotes [125] (plate D, 48).

Type species: Endotrypanum schaudinni Mesnil
and Brimont, 1908.

▪ Genus Novymonas Kostygov and Yurchenko,
2020. Monoxenous, insect host unknown; pro-
mastigotes and choanomastigotes; the only
known species bears multiple vacuole-enclosed
β-proteobacterial cells in the cytoplasm [275].

Type species: Novymonas esmeraldas Votýpka,
Kostygov, Maslov and Lukeš, 2020. Monotypic
(plate D, 44).

▪ Genus Zelonia Shaw, Camargo and Teixeira,
2017. Monoxenous; promastigotes parasitizing
true bugs and dipterans; represent a distinct line-
age that cannot be associated with any other
described genus [125].

Type species:Leptomonas costaricensisYurchenko,
Lukeš, Jirků, Zeledon and Maslov, 2006 (= Zelonia
costaricensis) (plate D, 45).

▪ Genus Borovskyia Kostygov and Yurchenko, 2017.
Monoxenous; parasites of true bugs; only promas-
tigotes are known; represents the earliest branch
within Leishmaniatae [271].
Type species: Leptomonas barvae Maslov and
Lukeš, 2010 (= Borovskyia barvae).Monotypic.

▪ Subfamily Herpetomonadinae Alexeieff, 1911, stat.
nov., emend. Kostygov and Yurchenko (= Phytomo-
nadinae Yurchenko, Kostygov, Votýpka and Lukeš,
2015; unavailable name).
Diagnosis: Clade of monoxenous parasites of

insects and dixenous parasites of insects and plants
defined by phylogenetic analyses based on 18S
rRNA and gGAPDH gene sequences; promastigotes
or choanomastigotes are dominant morphotypes;
may also form opisthomastigotes, opisthomorphs
and endomastigotes. Arginase absent.
Type genus: Herpetomonas Kent, 1880.
Note:Herpetomonaswas designated as a type genus

of the subfamily Phytomonadinae [282], making the
latter unavailable according to article 11.7.1.1 of
ICZN. At the same time, the name Herpetomonadi-
dae, a synonym of Trypanosomatidae Doflein, 1901
at the family level, is available as a name of the sub-
family (with the ending -inae), being the only
suitable one for a clade containing its type genus.
▪ GenusHerpetomonasKent, 1880. Monoxenous; para-
sites of dipterans, true bugs, fleas, cockroaches and
ciliates; polymorphic: predominant promastigotes
varying in size and shape aswell as non-mandatory
opisthomastigotes, opisthomorphs and endomasti-
gotes [106,282,283] (plate D, 51,52).

Type species:BodomuscarumLeidy, 1856 (=Herpe-
tomonas muscarum).

▪ Genus Lafontella Kostygov and Yurchenko, 2015.
Monoxenous; parasitic in the gut of flies; promas-
tigotes, opisthomastigotes and long
endomastigotes with elongated coiled flagellum
[282,284].

Type species: Herpetomonas mariadeanei Yoshida,
Freymuller and Wallace, 1978 (= Lafontella maria-
deanei). Monotypic.

▪ GenusPhytomonasDonovan, 1909 emend.Kostygov.
Diagnosis: long (often twisted) promastigotes and

endomastigotes; most species alternate between
plants and phytophagous true bugs, some switched
to predatory bugs and became secondary monoxe-
nous; obligate development in salivary glands
[103,119,122,123] (plate D, 53,54).

Type species: Leptomonas davidi Lafont, 1909 (=
Phytomonas davidi).

▪ Subfamily Strigomonadinae Votýpka, Yurchenko,
Kostygov and Lukeš, 2014. Monoxenous, with sev-
eral apomorphic traits: single β-proteobacterial
endosymbiont not enclosed in a vacuole, extensively
branched mitochondrion disrupting subpellicular
corset of microtubules, rudimentary paraflagellar
rod [274].
▪ Genus Angomonas Souza and Corte-Real, 1991.
Monoxenous parasites in the gut of blowflies;
choanomastigotes and opisthomorphs; kinetoplast
nearly rectangular, with kinetoplast minicircles
greater than 4 kb [285].

Type species: Crithidia deanei Carvalho, 1973
(= Angomonas deanei) (plate D, 56).

▪ Genus Strigomonas Lwoff and Lwoff 1931. Mono-
xenous parasites of the gut of dipterans and true
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bugs; polymorphic: epimastigotes and trypomasti-
gotes or choanomastigotes and opisthomorphs;
kinetoplast lens-shaped, usually with only one
side convex and another flat or concave; minicir-
cles less than 3 kb [285].

Type species: Strigomonas oncopelti Lwoff and
Lwoff, 1931 (plate D, 58).

▪ Genus Kentomonas Votýpka, Yurchenko, Kostygov
and Lukeš, 2014. Monoxenous parasites of the gut
of flies; mitochondrial branches press on the
plasmatic membrane forming ridges on the cell
surface; kinetoplast nearly rectangular [274].

Type species: Kentomonas sorsogonicus Votýpka
and Lukeš, 2014. Monotypic (plate D, 57).

▪ Subfamily Blastocrithidiinae Votýpka, Yurchenko
and Lukeš, 2021. A well-supported monophyletic
group (as judged by the analyses based on 18S
rRNA gene) of monoxenous trypanosomatids inhab-
iting the gut of true bugs (Heteroptera) [286].
▪ Genus Blastocrithidia Laird, 1959. Monoxenous
parasites of the gut of true bugs; epimastigotes
form resistant cyst-like straphangers [94]; some
members have non-canonical genetic code with
all three stop codons coding for amino acids
[287] (plate D, 63).
Type species: Crithidia gerridis Patton, 1908 (= Blas-
tocrithidia gerridis).

▪ Genus Obscuromonas Votýpka and Lukeš, 2021.
In 18S rRNA-based phylogenies, a sister group
to Blastocrithidia; monoxenous parasites in differ-
ent organs of heteropterans; some members
produce cyst-like straphangers [286] (plate D, 64).

Type species: Obscuromonas modryi Votýpka
and Lukeš, 2021.

▪ Subfamily Blechomonadinae Votýpka and Suková,
2013. A clade comprising the genus Blechomonas
according to phylogeny inferred using 18S rRNA
and gGAPDH genes [288].
▪ Genus Blechomonas Votýpka and Suková, 2013.
Monoxenous parasites in the gut of fleas;
promastigotes, choanomastigotes and amastigotes
significantly varying in size [288] (plate D, 66).

Type species: Blechomonas ayalai Votýpka and
Suková, 2013.

▪ Subfamily Paratrypanosomatinae Votýpka and
Lukeš, 2013. The earliest-branching lineage within
the family as judged by the phylogenies inferred
using 18S rRNA and multiple protein-coding genes
[289]. Single genus.
▪ Genus Paratrypanosoma Votýpka and Lukeš, 2013.
Monoxenous parasites of the gut of dipterans;
promastigotes; well-developed oral apparatus
with cytostome on the outer cell surface [290].

Type species: Paratrypanosoma confusum
Votýpka and Lukeš, 2013. Monotypic (plate D,
62).

• Genera not assigned to subfamilies
▪ Genus Jaenimonas Votýpka and Hamilton, 2020.

Distinct monoxenous lineage in 18S rRNA and
gGAPDH gene-based phylogenies; parasite of
the gut of fruit flies; monotypic [112].
Type species: Jaenimonas drosophilae Votýpka
and Hamilton, 2020 (plate D, 60).

▪ Genus Vickermania Kostygov and Yurchenko,
2020. Monoxenous parasites of the gut of flies;
promastigotes with two anteriorly oriented fla-
gella of unequal length, typically attached to
each other and separated during cell division;
uniflagellate cells appear only shortly after div-
ision; flagellar tips have rounded or elongated
apex and lateral extensions; large and loosely
arranged kDNA [291].

Type species: Herpetomonas muscarum ingeno-
plastis Rogers and Wallace, 1971 (= Vickermania
ingenoplastis) (plate D, 65).

▪ Genus Sergeia Svobodová et al., 2007. Distinct
monoxenous lineage in 18S rRNA and gGAPDH
gene-based trees; parasite of the gut of biting
midges; promastigotes as the only motile
stage [292].

Type species: Sergeia podlipaevi Svobodová et al.,
2007. Monotypic (plate D, 59).

▪ Genus Wallacemonas Kostygov and Yurchenko,
2014. Distinct monoxenous lineage in 18S rRNA
and gGAPDH gene-based trees; parasites of dip-
terans and true bugs; promastigotes as well as
non-mandatory opisthomorphs and endomasti-
gotes [293,294].

Type species: Leptomonas collosoma Wallace,
Clark, Dyer and Collins, 1960 (= Wallacemonas
collosoma) (plate D, 61).

• Trypanosomatidae incertae sedis (none is available in
culture)
▪ Genus Cercoplasma Roubaud, 1911. Monoxenous;

in the gut of flies; epimastigotes and trypomasti-
gotes; flagellum without free part, accompanied
by a filamentous cell processus [295].

Type species: Cercoplasma caulleryi Roubaud,
1911. Monotypic.

▪ Genus Malacozoomonas Nicoli, Penaud and
Timon-David, 1971. Monoxenous; in the gut and
hepatopancreas of molluscs; promastigotes and
amastigotes [296].

Type species: Herpetomonas patellae Porter, 1914
(= Malacozoomonas patellae).

▪ Genus NematodomonasNicoli, Penaud and Timon-
David, 1971. Monoxenous; in the gut of nema-
todes; promastigotes only [297].

Type species: Nematodomonas goodeyi Nicoli,
1971. Monotypic.

▪ Genus Rhynchoidomonas Patton, 1910 (= Cystotry-
panosoma Roubaud, 1911). Monoxenous; in the
gut and Malpighian tubules of flies; trypomasti-
gotes without free flagellum and conspicuous
undulating membrane; cyst-like amastigotes
observed in some species [94,298];

Type species: Rhynchomonas luciliae Patton,
1910 (= Rhynchoidomonas luciliae).

• Protists erroneously assigned to Kinetoplastea (none
is available in culture)
▪ Genus Trypanophis Keysselitz, 1904 emend.

Kostygov.
Diagnosis: Parasites of the gastrovascular

cavity of siphonophores; biflagellate, with striated
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rootlet, short free anterior flagellum, long pos-
terior flagellum attached to the cell body and
situated in shallow longitudinal groove; subpelli-
cular microtubules present only under groove;
membranous sacs under plasmalemma; micro-
pores; elongated mitochondrion parallel to the
flagellar groove, with tubular cristae, possesses
anterior dilation (‘kinetoplast’) with multiple
osmiophilic bodies; no traces of oral apparatus
[299].

Type species: Trypanosoma grobbeni Poche, 1903
(= Trypanophis grobbeni).

Note: Assignment of this genus to kinetoplas-
tids is not justified, since its ‘kinetoplast’, as
judged by Feulgen staining, does not contain
DNA. The presence of cortical membranous
sacs, micropores and a striated rootlet [299]
strongly suggest that this flagellate is a member
of Alveolata Cavalier-Smith, 1991.

• Kinetoplastea incertae sedis
▪ Genus Bordnamonas Larsen and Patterson, 1990.

Free-living, solitary, with pliable body; biflagel-
late, anterior flagellum forms arc extending in
front of the cell, while posterior flagellum is trail-
ing; phagotrophic, cytostome is anterior to
flagella [300]; fine structure and type of kineto-
plast unknown.

Type species: Bordnamonas tropicana Larsen and
Patterson, 1990. Monotypic (plate A, 7).

Note: although many features of the genus are
reminiscent of kinetoplastids, it was also con-
sidered to be a stramenopile [182,301].

▪ Genus Cephalothamnium Stein, 1878. Ectocom-
mensal on freshwater copepods; biflagellate,
both flagella with mastigonemes, the posterior
flagellum attached to cell body; forms sedentary
colonies with up to 30 cells attached to secreted
stalk by the distal end of the recurrent flagellum;
large prokinetoplast; subpellicular microtubules
only in the anterior part; phagotrophic, with
apical cytostome and funnel-shaped cytopharynx
[61].

Type species: Cephalothamnium cyclopum Stein,
1878. Monotypic.

▪ Genus DesmomonasWilliams, 1999. Parasitic in tur-
bellarian parenchyma, either free orattached to host
cell masses via anterior processus with desmo-
somes; biflagellate, both flagella unattached to the
cell body, oriented posteriorly and lacking promi-
nent paraflagellar rod; corset of subpellicular
microtubules has breaches allowing body shape
changes; no cytostome detected (osmotrophic);
compact mitochondrion with polykinetoplast dis-
tant from the flagellar base; microneme-like
osmiophilic bodies [60].

Type species: Desmomonas prorhynchi Williams,
1999. Monotypic.

▪ Genus Jarrelia Poynton, Whitaker and Heinrich,
2001. Parasite of blowhole mucus of pygmy
sperm whale; biflagellate, posterior flagellum
forms undulating membrane and can attach to
host material by its tip; polykinetoplastic; osmo-
trophic [87].
Type species: Jarrellia atramenti Poynton, Whi-
taker and Heinrich, 2001. Monotypic.

Note: previously assigned to Parabodonida
based on superficial resemblance with Trypano-
plasma [3]; however, no reliable evidence
supporting such an assignment is available.

▪ Genus Lamellasoma Davis, 1947. Parasite of fish
gills; uniflagellate, single flagellum oriented pos-
teriorly and attached to cell body; type of
kinetoplast uncertain; epibiotic bacteria on the
surface [81].

Type species: Lamellasoma bacillaria Davis, 1947.
Monotypic.

Note: May represent an unusual species of pis-
cine Cryptobia with a very short or completely
reduced anterior flagellum [81].

3. Diplonemea
3.1. Biology
The body of knowledge on the biology of diplonemids com-
prises a large number of environmental 18S rRNA sequences,
few cultured and sequenced species, as well as several for-
mally described species lacking sequence data and not
available in culture. Until recently, diplonemids have been
perceived as a small and unimportant group of euglenozo-
ans. However, deep-sea sampling and extensive
metabarcoding surveys in the past two decades uncovered
extraordinary diversity of marine planktonic diplonemids
[12,302,303]. Their discovery began with the recovery of
environmental 18S rRNA sequences from deep-sea plank-
tonic and hydrothermal samples, which together formed
a novel well-supported clade, sister to Diplonemidae
[304,305]. Subsequently, a diplonemid-focused study of
several oceanic regions uncovered considerable diversity
within the new clade by amplifying 18S rRNA, designated
as deep-sea pelagic diplonemids (DSPD) I clade [302]. The
same study identified another small lineage called DSPD II.

A breakthrough came with a V9 region metabarcoding
survey by the Tara Oceans expedition, which uncovered
remarkable abundance and diversity of DSPD in the tropical
and subtropical sunlit ocean, expanding the number of poten-
tial diplonemid species to over 12 300 [303]. Further analysis
of combined datasets from photic and mesopelagic zones
identified as many as approximately 45 000 diplonemid
species, thus qualifying them among the most species-rich
planktonic eukaryotes in the ocean [12]. In the most recent
study, extended with smaller datasets from the Arctic, Adria-
tic Sea and anoxic Cariaco Basin, the number of species
increased to approximately 67 000, designating diplonemids
as the most diverse and fifth most abundant eukaryotic
clade [48]. However, fluorescence in situ hybridization studies
or those based on the V4 region of 18S rRNA reported signifi-
cantly lower abundance [306–308].

Analysis of extended Tara Oceans datasets identified that
97% of diplonemid diversity is confined to the DSPD I clade,
or eupelagonemids, whereas classic diplonemids (or Diplone-
midae), hemistasiids and DSPD II accounted for 1% each
[12,48]. The distribution of eupelagonemids showed clear
depth stratification: although their sequences were recovered
from the surface water down to the abyssopelagic zone [309],



Plate E. Diplonemids. Light micrographs of cultured (67) Diplonema papillatum; (68) Rhynchopus euleeides; (69) Sulcionema specki; (70) Artemidia motanka; (71)
Eupelagonemid sp. ( provided by Noriko Okamoto and Patrick Keeling); (72) Diplonema aggregatum; (73) Lacrimia lanifica; (74) Flectonema neradi; (75) Namystinia
karyoxenos; (76) Hemistasia phaeocysticola. Scale bar, 10 µm (67–75).
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they are most diverse and abundant in the mesopelagic zone.
However, multiple lineages of eupelagonemids show cosmo-
politan distribution without a clear biogeographic pattern
and a rather weak relation to abiotic factors [310]. Eupelago-
nemids generally show preference for dark and moderately
oxygenated environments, but were occasionally detected
under anoxic conditions [48]. It is still not known what
drives the high diversity of eupelagonemids given the rela-
tive homogeneity of the physico-chemical conditions in the
deep ocean, especially in dysphotic and aphotic zones. It
has been suggested that different species might use different
nutrient resources [302]. Indeed, the co-occurrence analyses
showed very few obvious patterns of interaction with other
components of marine plankton, among which are positive
correlations with parasitic dinoflagellates and stramenopiles
as well as with bacteria and bacterivorous stramenopiles,
indicating possible bacteriovory and parasitic lifestyle of
some eupelagonemids [12] (plate E, 67–76).

Unlike the deep-sea planktonic clades, which inhabit
nutrient-poor, dark and cold ocean zones [12,302], classic
diplonemids seem to prefer a variety of nutrient-rich environ-
ments, such as benthos, coastal surface waters, artificial water
bodies and aquaria [311]. Classical diplonemids have been
widely considered as benthic organisms [11] apparently due
to the sampling bias. Their sequences have been indeed
recovered from various benthic environments, including
cold anoxic seeps [312], hydrothermal vents [304] and the
sea floor [302], in addition to several species that were
observed in tropical shallow-water [300,313] and deep-sea
sediments [311]. However, diplonemids are also a common
component of the plankton in photic layer of the temperate
to tropical zones [12]. In addition, their representatives are
known from coastal planktonic communities, including
Rhynchopus coscinodiscivorus [314], Diplonema breviciliata
[315], D. papillatum [316], D. nigricans [317], Lacrimia lanifica,
Rhynchopus serpens and Sulcionema specki [311]. Classical
diplonemids were also frequently isolated from aquaria,
such as D. japonicum, D. aggregatum, D. ambulator ATCC
50223, Rhynchopus humris, Flectonema neradi and Rhynchopus
ATCC 50230 [311] (plate E, 67–70,72–76).

Diplonemids have been occasionally reported from fresh-
water ecosystems, such as the case of Rhynchopus amitus [318]
andDiplonema ambulator froma freshwater aquarium [319]. Sub-
sequently, metabarcoding approach identified a low number of
diplonemids in geographically isolated deep lakes, such as
Baikal [320], and lakes in Japan [321], Switzerland and the
CzechRepublic [322]. Further systematicmetabarcoding screen-
ingof lakesusingdiplonemid-specificprimersmight uncover so
far overlooked diversity of freshwater diplonemids.

The fourth diplonemid clade, Hemistasiidae, is rep-
resented by several hundred species, so far found in the
photic zone [12]. Hemistasia-like flagellates have been fre-
quently detected in coastal waters of North and Baltic seas,
Mediterranean, the Sea of Japan and around Australia and
Antarctica [313,315,323–325], pointing to their cosmopolitan
distribution from cold to tropical regions. All hemistasiids
were described from planktonic samples, except for Artemidia
motanka isolated from an aquarium [311] and a hemistasiid
associated with shallow-water sediments [313].

Classic diplonemids and hemistasiids are exclusively het-
erotrophic organisms, mostly known as eukaryovores, and
displaying a wide array of lifestyles, such as ectocommensal-
ism, predation, scavenging and opportunistic endoparasitism.
Several species were found to parasitize lobsters, clams
[180,326] and plants [319], while others were referred to as
epibionts of crabs [327], lobsters [180], plants [300,315,316]
and algal biofilms (Diplonema sp. 4 ATCC 50232). Another
common trophic mode for both groups is predation and/or
scavenging on planktonic algae and small invertebrates, includ-
ing diatoms, dinoflagellates, green algae, prymnesiophytes and
copepods [314,315,318,323]. Bacteriovory was described from
only two species and seems rather uncommon [300,328].



Tree E. Diplonemids. A tree summarizing phylogenetic reconstructions based on 18S rRNA gene. Circles denote genera with cultured representatives.
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3.2. Taxonomy
Class Diplonemea and order Diplonemida Cavalier-Smith,
1993 (tree E).

Naked colourless biflagellates with apical papilla; subapi-
cal flagellar pocket; plasma membrane subtended by dense
microtubular corset; peripheral mitochondria with giant
lamellar cristae and multiple interspersed DNA aggregates;
equally thick flagella; tubular extrusomes in several species;
likely phagotrophic feeding.
• Family Diplonemidae Cavalier-Smith, 1993; also known as
classic diplonemids with metaboly always present.
▪ Genus Diplonema Griesmann, 1914. Based on 18S rRNA

gene, the genus is paraphyletic [180]; morphological and
18S rRNA discrepancies (D. papillatum is 87% different
from D. ambulator) justify possible division of this
genus into two genera. Elongated body with constricted
anterior end; equal to subequal flagella; gliding move-
ment and ambulation of flagella in trophic stage;
tubular Euglenozoa-type extrusomes and heterody-
namic flagella with paraflagellar rods (PFR) in
swimming stage (if present) (applies to Diplonema
ambulator, D. japonicum and D. aggregatum).
Type species: Diplonema (Isonema) papillatum Porter, 1973
(short flagella of equal length lacking PFR; nearly apical
flagellar pocket; big papilla) (plate E, 67).

▪ Genus Rhynchopus Skuja, 1948. Flagellar stubs with dis-
organized axoneme microtubules, concealed inside
flagellar pocket and gliding motion in trophic stage; fla-
gella are gradually built in actively gliding cells; long
heterodynamic flagella with PFR in swimming stage,
anterior flagellum forming a lasso and the posterior
one stretched along the body (plate E, 68).
Type species: Rhynchopus amitus Skuja, 1948.
▪ Genus Lacrimia Tashyreva, Prokopchuk, Horák and
Lukeš, 2018. Permanently long subequal flagella with
PFR; teardrop-shaped body; big posterior digestion vacu-
ole; rotationmovement andoscillating swimmingpattern.
Type species: Lacrimia lanifica Tashyreva, Prokopchuk,
Horák and Lukeš, 2018 (plate E, 73).

▪ Genus Flectonema Tashyreva, Prokopchuk, Horák
and Lukeš, 2018. Short flagella of equal length;
elongated, slender, crooked body reminiscent to
D. ambulator type; distinguished by the presence
of PFR in trophic stage; gliding and rotation motion,
swimming absent, dispersal swimming stage not
described.
Type species: Flectonema neradi Tashyreva, Prokopchuk,
Horák and Lukeš, 2018 (plate E, 74).

▪ Genus Sulcionema Tashyreva, Prokopchuk, Horák and
Lukeš, 2018. Short flagella of equal length, containing
PFR; long flat body with conspicuous cytoplasmic
inclusions, pleomorphic; writhing motion, but swim-
ming and gliding absent; highly metabolic.
Type species: Sulcionema specki Tashyreva, Prokopchuk,
Horák and Lukeš, 2018 (plate E, 69).

• Family Hemistasiidae Cavalier-Smith, 2016. Fast swim-
ming, long flagella with prominent PFR; tubular
Euglenozoa-type extrusomes; peripheral lacunae; highly
asymmetrical apex with flexible pointy rostrum; metaboly
always present; anterior groove; subapically inserted fla-
gella inside a deep invagination; large posterior
digestion or lipid vacuole is common; cylindrical to pyri-
form body; establishment of three genera is justified by
substantial differences in 18S rRNA gene [325].
▪ Genus Hemistasia Griesmann, 1914. Invariable presence

of tubular extrusomes; distinguished from related
genera by acute rostrum and smaller body.
Type species: Oxyrrhis phaeocysticola Scherffel, 1900
(= Hemistasia phaeocysticola) (plate E, 76).



Plate F. Euglenids. Light micrographs of cultured (77) Cryptoglena sp. (provided by Bożena Zakryś); (78) Lepocinclis autumnalis (provided by Bozena Zakrys); (79) Phacus
acuminatus (provided by Bozena Zakrys); (80) Trachelomonas armata (provided by Bozena Zakrys); (81) Monomorphina sp. (provided by Bozena Zakrys); (82) Menoidium sp.
(provided by Bozena Zakrys); (83) Discoplastis spathirhyncha (provided by Bozena Zakrys); (84) Euglenaformis proxima (provided by Bozena Zakrys); (85) Euglena gracilis
(provided by Bozena Zakrys); (86) Eutreptiella pomquetensis (provided by Bozena Zakrys); (87) Rapaza viridis (provided by Naoji Yubuki); (88) Jenningsia sp. (provided by
Gordon Lax); (89) Peranema sp. (provided by Gordon Lax); (90) Anisonema sp. (provided by Gordon Lax); (91) Heteronema vittatum (provided by Gordon Lax); (92) Dinema
sp. (provided by Gordon Lax); (93) Olkasia polycarbonata (provided by Gordon Lax); (94) Notosolenus ostium (provided by Gordon Lax); (95) Sphenomonas teres (provided by
Gordon Lax); (96) Lentomonas corrugata (provided by Gordon Lax); (97) Calkinsia aureus (provided by Naoji Yubuki). Scale bar, 10 µm (77–97).
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▪ Genus Namystinia Prokopchuk, Tashyreva and Lukeš,
2019. Broader rostrum; tubular extrusomes only in
starved cells; morphologically indistinguishable from
Artemidia.
Type species: Namystinia karyoxenos Prokopchuk,
Tashyreva and Lukeš, 2019 (plate E, 75).

▪ Genus Artemidia Prokopchuk, Tashyreva and Lukeš,
2019. Broader rostrum; invariable presence of tubular
extrusomes.
Type species: Artemidia motanka Prokopchuk, Tashyreva
and Lukeš, 2019 (plate E, 70).

• Family Eupelagonemidae Okamoto and Keeling, 2019.
Formerly known as ‘deep sea pelagic diplonemids 1’
(DSPD I), possibly non-metabolic.
▪ Genus Eupelagonema Okamoto and Keeling, 2019.

Elongated elliptical body, round on one end and
constricted on the other (plate E, 71).
Type species: Eupelagonema oceanica Okamoto and Keel-
ing, 2019.

Note: DSPD II (deep sea pelagic diplonemids II)—small
planktonic clade, well-supported phylogenetically, known
exclusively from sequences of the V9 region of 18S rRNA
[12], without cultured or formally described representatives;
morphology and ultrastructure not known.

4. Euglenida and Symbiontida
4.1. Biology
Since most of the 18S rRNA phylogenies placed symbiontids
either within euglenids, or as a sister clade to them (e.g.
[170,329,330]), they are often regarded as derived euglenids
(e.g. [329,331]). For those reasons, here we discuss the biology
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of euglenids and symbiontids together. However, a recent
phylogenomic reconstruction [8] placed the latter group as
a sister to diplonemid-kinetoplastid clade (Glycomonada),
suggesting that they should be treated as a separate group
within Euglenozoa.

Euglenida (plate F, 77–96) and Symbiontida (plate F, 97)
inhabit aquatic environments, but they dominate in different
ecological niches. Phagotrophic euglenids (plate F, 88–96) are
widespread in shallow marine, brackish and freshwater sedi-
ments, and are presumably important predators in these
ecosystems [42,332,333]. Recently, they have also been reported
from deep-sea samples [334]. Osmotrophic (plate F, 82) and
phototrophic euglenids (euglenophytes; plate F, 77–81, 83–87)
mainly inhabit the water column of freshwater environments.
In the temperate zone, euglenophytes are abundant in small
eutrophic reservoirs where the water warms up quickly.
They might form blooms, including toxic blooms caused by
Euglena sanguinea [335,336]. In the tropical climate, eugleno-
phyte blooms are also commonly reported, especially from
aquaculture ponds [337,338]. Several lineages of typically
freshwater genera—Discoplastis (plate F, 83), Phacus (plate F,
79), Lepocinclis (plate F, 78), Euglena (plate F, 85) and Euglenaria,
have been detected in the coastal environments in low
abundances [339]. Moreover, some species (Euglena rustica
and E. obtusa) have been reported to migrate vertically in
marine sand in coordination with tidal and diurnal
cycles. They are usually highly abundant and form green
patches in marine sand during low tides [340]. The three
earliest-branching lineages of photosynthetic euglenids,
Rapaza (plate F, 87), Eutreptia and Eutreptiella (plate F, 86),
belong to marine plankton. Although the known diversity
of marine species of euglenophytes is low, blooms of
Eutreptiales have been reported from eutrophic coastal
waters, where they can make up to approximately 46%
of the total biomass of the phytoplankton population
[341,342]. Symbiontids, inhabiting both shallow and deep
anoxic marine sediments, host sulfur-oxidizing or sulfide-
oxidizing epsilonproteobacterial epibionts, which detoxify
their immediate surrounding environment [41]. They might
be a dominant group in certain environments, such as in
the protist community associated with bacterial mats in
oxygen-depleted sediment in Monterey Bay [343].

It has been demonstrated that both phagotrophic
(e.g. Distigma) and photosynthetic euglenids (e.g. Euglena
gracilis; plate F, 85) are remarkably tolerant to various
kinds of pollution with heavy metals such as cadmium,
chromium or lead, as well as capable to remove these ions
from the environment, making these protists potentially
suitable for use in bioremediation of heavy metal-rich
industrial wastewater [344,345]. The genetic background of
heavy metal resistance in euglenids has been examined in
detail only in the genus Peranema. Interestingly, although
the investigated Peranema sp. strain exhibited the capability
for efficient removal of cadmium from wastewater samples,
the study revealed that it possesses genes responsible for
resistance to a variety of other heavy metals, but not cad-
mium [346]. Euglenophytes have also been found in waters
polluted with diesel oil [347], phenol [348], herbicides and
insecticides [349,350], and can survive in highly radioactive
water [351]. Some Euglenophytes are also extremophiles
(e.g. Euglena mutabilis), as they tolerate very high salinity
[352] in extremely acidic environments [353] or in hot mud
pools [354].
Euglenids and symbiontids are predominantly free-living,
exhibiting a remarkably wide range of nutrition modes,
including phagotrophy, osmotrophy and photoautotrophy.
Phagotrophic euglenids consume bacteria or microbial eukar-
yotes, and their prey size correlates with the euglenids’ cell
size and flexibility. Some phototrophs are capable of pinocy-
tosis, or even phagotrophy of algae in the case of the deep-
branching phototroph Rapaza [355] (plate F, 87). Symbiontids
are marine heterotrophs, presumably phagotrophs, as
suggested by their ultrastructure. Additionally, the bacteria
on their surface probably exchange metabolites with the
hosts’ mitochondria-related organelles, and it is also possible
that they provide a food source for the symbiontids [7].

In contrast with the dominant free-living euglenids, there is
an assemblage of eight heterotrophic genera incertae sedis
(Michajlowastasia, Parastasiella, Dinemula, Paradinemula, Mono-
nema, Ovicola, Naupliicola and Embryocola) that exhibit obligate
parasitic lifestyles. Although their host range is rather narrow,
encompassing exclusively freshwater, free-living copepods
(specifically the eggs, larvae and digestive tracts of adults),
their geographical range spans across the eutrophic freshwater
bodies of all continents and nearly all climate zones, covering
the range of their host group. Unfortunately, the phylogeny
of these eight genera remains unresolved, as virtually all
studies of the parasitic euglenids, however extensive, were car-
ried out in the pre-sequencing era [356]. Occasionally, other
photosynthetic (Euglenamorpha) and heterotrophic (Heteronema)
euglenids have been identified in the gastrointestinal tracts of a
very wide range of vertebrate and invertebrate animal hosts;
however, it remains disputed whether they are symbionts or
parasites [357,358]. Several species of euglenophytes (mainly
genus Colacium) have been recognized as parasites or, more
likely, epibionts of zooplankton [359–363], while others (e.g.
Euglena mutabilis, Trachelomonas hispida) have also been ident-
ified in the traps of carnivorous plants, such as Genlisea [364]
or Utricularia [365]. Whether euglenophytes are prey, accidental
inhabitants, or a part of the specialized community of the
carnivorous plants’ traps, remains unresolved.

As most aquatic microbial eukaryotes, euglenids
and symbiontids are considered cosmopolitan. Our under-
standing of their distribution is hampered by the limited
number of environmental sequencing projects focused
on those groups. Despite clear microscopical evidence of
phagotrophic euglenids in sediments and phototrophic
euglenids in ponds, they are suspiciously rare in environ-
mental sequencing datasets [166,366–368]. It was suggested
that euglenids’ 18S rRNA is divergent and often longer
than the typical eukaryotic one [369,370], and the universal
primers are not working efficiently for euglenids. Environ-
mental sequences might be, however, obtained with specific
primers designed for a certain group [371]. The same as for
diplonemids, the V9 region of 18S rRNA seems to be a
more suitable metabarcoding marker, and phototrophic
euglenids have been surveyed in the environmental
sequences from the TARA Oceans dataset and OSD dataset
[339]. Although euglenophytes are overall quite rare in the
marine plankton, their distribution is quite broad in the
global ocean, with preference for the coastal upwelling
zones, where the nutrient availability is higher than in
other parts of the ocean [372]. Symbiontids have been inves-
tigated in several environmental 18S rRNA-based surveys in
different geographical regions, suggesting their cosmopolitan
distribution [166,373–376].



Tree F. Euglenids and symbiontids. A tree summarizing multiple phylogenetic reconstructions, primarily based on 18S rRNA gene sequences, genes encoded by
plastid genomes (Euglenophyceae), and a set of nuclear protein-coding genes retrieved from transcriptomes. Polyphyletic genera are marked with an asterisk (*).
Lineages with highly unstable position are marked with a dotted line. Possible paraphyly of clades has been further described in the section on Euglenids taxonomy.
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4.2. Taxonomy
Class Euglenida Bütschli, 1884 emend. Simpson, 1997 (tree F).

Euglenids’ synapomorphy is a pellicle build of proteinaceous
strips beneath the plasma membrane. The strips can be fused
together in certain genera; otherwise, the organisms are
capable of characteristic ‘euglenoid motion’ also known as
‘metaboly’. Another characteristic feature, shared with
Kinetoplastida, is the presence of flagella inserted at the
base of the flagellar pocket, and the flagella are conspicu-
ously thickened due to the presence of paraxonemal
(paraflagellar) rods. Additionally, the main storage polymer
of most euglenids is paramylon, a distinctive β-1,3-glucan.

Note: Historically, species belonging to class Euglenida
were described according to the rules of the ICZN or the
ICN due to the presence of photosynthetic organisms
within this ancestrally non-photosynthetic group. This has
created some confusion, as several taxa bear two different,
equally valid names. Moreover, many clades are unstable
and assigning a rank and a name to them would be unpro-
ductive, since these names are likely to become obsolete
very soon. The taxonomy proposed here is a consensus
between a strictly organized taxonomy for stable clades and
informal nomenclature. Additionally, Euglenophyceae and
their subordinate taxa are treated as algae and classified
according to ICN (with alternative names consistent with
ICZN provided in notes), while all other subordinate taxa
of Euglenida are classified according to ICZN (with alterna-
tive names consistent with ICN provided in notes).

• Clade Olkaspira Lax and Simpson, 2020. This robustly sup-
ported monophyletic clade includes organisms with
pellicle composed of S-shaped proteinaceous strips with
overhangs, and chisel-shaped feeding apparatus (if the
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apparatus is present; see below) [8]. Flexible cells belong to
the subordinate clade Spirocuta; rigid cells belong to the
subordinate genus Olkasia:

▪ Genus Olkasia Lax, Lee, Eglit and Simpson, 2019.
Rigid, flattened, biflagellate cells with 10 pellicle
strips; consists of only one species (O. polycarbo-
nata), formerly classified as Ploeotia [377].
Type species:Olkasia polycarbonata Lax, Lee, Eglit and
Simpson, 2019 (plate F, 93). No culture available; sev-
eral sequences of SSU rDNA and transcriptomes
obtained from single-cell isolates.

○ Clade Spirocuta Cavalier-Smith, 2016. The monophy-
letic group encompassing all flexible euglenids
including phototrophs (Euglenophyceae), primary
osmotrophs (Aphagea) and various phagotrophs [378].
The synapomorphy of this group is the capability for
‘metaboly’ also known as ‘euglenoid motion’.
Note: The other name used for this assemblage is Heli-
cales [170,330,379,380].
▪ Clade Euglenophyceae Schoenichen, 1925 emend.

Marin and Melkonian, 2003. The monophyletic
group [170,381–383] comprising the basal monotypic
genus Rapaza [355]. A predominantly photosynthetic
group with plastids derived from secondary endo-
symbiosis with green alga, some species secondarily
osmotrophic, most species with photosensory
eyespot.
Note: The other name used for this group is Euglenea
Bütschli, 1884 emend. Busse and Preisfeld, 2002; how-
ever, as pointed out by Cavalier-Smith in the work
cited above, this name is shared with a beetle genus.
○ Order Euglenales Leedale, 1967 emend. Marin and

Melkonian, 2003. Cells with one emergent flagellum
and one vestigial within the cell; feeding by photo-
trophy or secondarily by osmotrophy, mostly
freshwater [3]; 18S rRNA gene has C in the first pos-
ition of the Helix 7/8 spacer [381]; introns highly
abundant in the plastid genome (always more than
28 and usually more than 51); intron maturase
mat1/ycf13 always present in the plastid genome,
with mat2, mat5 or both of them usually
present [384].
• Family Euglenaceae Dujardin, 1841 emend. Kim

et al., 2010. Solitary or colonial, mostly free-living,
but some inhabit the digestive tracts of animals;
usually possess one emergent flagellum and one
non-emergent; some may possess mineralized
external shells (lorica); size, number and presence
of pyrenoids in chloroplasts varieswith the species
[3]; ribosomal operonmay be present in the plastid
genome in one copy or more, but never as two
identical inverted repeats [384].

Note: valid name under ICZN is Euglenidae
Dujardin, 1841.
▪ Genus Colacium Ehrenberg, 1834. Solitary or

colonial cells with envelopes that also form
stalks for surface attachment [385]; often ses-
sile (epizoic; attached to copepods) [386];
ribosomal operon present in the plastid
genome in one full and one incomplete
copy with the same orientation [387].
Type species: Colacium vesiculosum Ehrenberg,
1834. Type species and other species available
in the culture collections; multiple 18S rRNA
sequences and a full plastid genome sequence
of the type species are available.

▪ Genus Cryptoglena Ehrenberg, 1831. Rigid,
solitary, laterally compressed cells with a longi-
tudinal furrow and one or two chloroplasts
(plate F, 77); 18S rRNA gene has AT base pair
in the third position of the Helix 40 [381].
Type species: Cryptoglena pigra Ehrenberg,
1832. Type species and other species available
in the culture collections; multiple 18S rRNA
sequences and a full plastid genome sequence
of C. skujae (non-type species) are available.

▪ Genus Euglena Ehrenberg, 1830. Solitary cells
with very visible metaboly; chloroplasts with
pyrenoids (plate F, 85); at least two species
(E. longa, E. quartana) secondarily non-photo-
synthetic, feeding by osmotrophy; 18S rRNA
gene has T (rarely A or C) in the seventh
position of theHelix 47/33 spacer [381]; riboso-
mal operonpresent in theplastid genome in one
copy or in consecutive, tandemly repeated
copies [384]; mitochondrial genome consists of
seven linear chromosomes and encodes seven
proteins which constitute components of com-
plexes I, III and IV of the respiratory chain [27].
Type species: Cercaria viridis O.F. Müller,
1786 (= Euglena viridis).
Note: the genus Euglena is polyphyletic—on
the phylogenetic trees Euglena archaeplasti-
diata and Euglena velata do not group with
the main clade of Euglena [382,383]. Type
species and other species available in culture
collections, multiple sequences of 18S rDNA
available; nuclear genome, plastid genome
and mitochondrial genome of E. gracilis
(non-type species), as well as multiple plas-
tid genomes of other species, are available.

▪ GenusEuglenaformis Bennett andTriemer, 2014.
Cryptic genus, morphologically undistinguish-
able from Euglena, but phylogenetically basal to
all Euglenaceae; ribosomal operon present in
the plastid genome in one copy [388]. Euglena-
formis is a monospecific genus.
Type species: Euglena proxima Dangeard,
1902 (= Euglenaformis proxima) (plate F, 84).
Available in culture collections; 18S rRNA
and a full plastid genome sequence of the
type species are available.

▪ Genus Euglenaria Karnkowska, Linton and
Kwiatowski, 2010. Solitary, metabolic cells
with parietal, lobed chloroplasts with single
pyrenoids and bilateral paramylon caps; dis-
tinguished from the genus Euglena by its
distant phylogenetic position, sister to Mono-
morphina [389]; ribosomal operon present in
the plastid genome in one copy [390].
Type species: Euglena caudata Hübner, 1886
(= Euglenaria caudata). Type species and
other species available in culture collections;
18S rDNA of multiple species and a full plas-
tid genome sequence of Ea. anabaena (non-
type species) are available.
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▪ Genus Monomorphina Mereschkovsky, 1877.
Rigid or slightly metabolic cells with pelli-
cle-formed tail, 2–4 large paramylon plates
and one or few large, spherical chloroplasts
[381,391] (plate F, 81); 18S rRNA gene has T
in the third position of the terminal loop of
the Helix 27 [381]; ribosomal operon present
in the plastid genome in one copy [390].
Type species: Euglena pyrum Ehrenberg,
1832 (= Monomorphina pyrum). Type species
and other species available in culture collec-
tions; 18S rRNA of multiple species and two
full plastid genome sequences (M. aenigmatica
and M. parapyrum; non-type species) are
available.

▪ Genus Strombomonas Deflandre, 1930. Cells
of variable shape and size with discoid or flat
chloroplasts with pyrenoids and smooth
lorica without collar [392]; ribosomal operon
present in the plastid genome in one full
and one incomplete copy with opposite
orientation [387].
Type species: Trachelomonas hispida var. verru-
cosa E. Daday, 1905 (= Strombomonas verrucosa).
Type species and other species available in
culture collections; 18S rRNA of multiple
species and a full plastid genome sequence of
S. acuminata (non-type species) are available.

▪ Genus Trachelomonas Ehrenberg, 1834. Cells
of variable shape and size, with ornamented
lorica with collar (plate F, 80); some species
osmotrophic [381]; ribosomal operon present
in the plastid genome in one copy [390].
Type species:Microglena volvocina Ehrenberg,
1831 (= Trachelomonas volvocina). Type
species and other species available in culture
collections; 18S rRNA of multiple species
and a full plastid genome sequence of the
type species are available.

• Family Phacaceae Kim, Triemer and Shin 2010.
Solitary, free-living, with large paramylon
grains and numerous small, discoid chloroplasts
without pyrenoids.

Note: valid name under ICZN is Phacidae
Kim, Triemer and Shin 2010.
▪ Genus Discoplastis Triemer, 2006. Cells

capable of metaboly, with a sharp, colourless
tail [393,394]; two ribosomal operon-contain-
ing inverted repeats present in the plastid
genome [384].
Type species: Euglena spathirhyncha Skuja,
1948 (= Discoplastis spathirhyncha) (plate F,
83). Type species and other species available
in culture collections; 18S rRNA of multiple
species and a full plastid genome sequence
of the type species are available.

▪ Genus Flexiglena Zakryś and Łukomska, 2020.
Highly metabolic cells with numerous small
paramylon grains and a distinct large, single
grain located near the stigma [394].
Type species: Euglena variabilis Klebs, 1883
(= Flexiglena variabilis). Currently not available
in culture collections, but deposition of the
type species in a culture collection is in pro-
gress; 18S rRNA of multiple species available.

▪ Genus Lepocinclis Perty, 1849. Rigid, unflat-
tened cells with ring-shaped paramylon
grains (plate F, 78); some (L. cyclidiopsis) sec-
ondarily non-photosynthetic, feeding by
osmotrophy; 18S rRNA gene has GC base
pair in the sixth position from the end of
the Helix 12 and T in the second position
of the Helix 23/27 spacer [381]; two riboso-
mal operon-containing inverted repeats
present in the plastid genome [384].
Type species: Lepocinclis globulus Perty, 1849.
Type species and other species available in
culture collections; 18S rRNA and full plastid
genome sequences of multiple non-type
species are available.

▪ Genus Phacus Dujardin, 1841. Rigid, laterally
or triangularly compressed cells with ring-
shaped paramylon grains (plate F, 79); some
(P. ocellatus) secondarily non-photosynthetic,
feeding by osmotrophy [381]; ribosomal
operon present in one copy in the plastid
genome [384].
Type species: Euglena longicauda Ehrenberg,
1830 (= Phacus longicauda). Type species and
other species available in culture collections;
18S rRNA and full plastid genome sequences
of multiple non-type species are available.

○ Order Eutreptiales Leedale, 1967 emend. Marin and
Melkonian, 2003. Solitary, free-living cells with two
or four flagella of equal or unequal length, capable
of metaboly [3]. Predominantly marine. Introns are
present in their plastid genomes, but not abundant
(usually fewer than 28 and never more than 51);
intron maturase mat1/ycf13 always present in the
plastid genome, but mat2 and mat5 absent [384].
• Family Eutreptiaceae Hollande, 1942. With the

same definition as the order.
Note: valid name under ICZN is Eutreptiidae

Hollande, 1942.
▪ Genus Eutreptia Perty, 1852. Two emergent

flagella of almost equal length [395]; riboso-
mal operon present in one copy in the
plastid genome [384].
Type species: Eutreptia viridis Perty, 1852.
Type species and other species available in
culture collections; 18S rRNA and a full plas-
tid genome sequence of the type species are
available.

▪ Genus Eutreptiella da Cunha, 1914. Two emer-
gent flagella of notably unequal length [395]
or four flagella composed of longer and
shorter pairs [396] (plate F, 86); may possess
epi- or endobiotic bacteria [397]; mostly psy-
chrotolerant or psychrophilic [342,396]; 18S
rRNA gene possesses a CA insertion after
the second position in the loop of Helix 18
[381]; ribosomal operon present in two
copies with opposite orientation in the plastid
genome, but one copy may be split [170,381].
Type species: Eutreptiella marina da Cunha,
1914. Type species and other species available
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in culture collections; 18S rRNA sequences of
multiple non-type species, two full plastid
genome sequences (Etl. gymnastica and Etl.
pomquetensis; non-type species) and a tran-
scriptomic dataset of Etl. gymnastica (non-
type species) are available.

Note: the genus Eutreptiella is often para-
phyletic in 18S phylogenies [170,381].

○ Order Rapazida Cavalier-Smith, 2016. Solitary, free-
living cells with two flagella of unequal length,
feeding by phagotrophy on microalgae such as Tet-
raselmis; marine, capable of metaboly [355].
▪ Family Rapazidae Cavalier-Smith, 2016. With

the same definition as the order.
▪ Genus Rapaza Yamaguchi, 2012. With the

same definition as the family.
Type species: Rapaza viridis Yamaguchi,

Yubuki and Leander, 2012 (plate F, 87); 18S
rRNA sequence of the type species available.

○ Euglenophyceae incertae sedis—genera with unre-
solved position due to lack of molecular data, and
therefore questionable status, are:

▪ Genus Ascoglena Stein, 1878. Small, solitary
cells with lorica, often sessile (attached to fila-
mentous algae) [392].
Type species: Ascoglena vaginicola Stein, 1878.

▪ Genus Euglenamorpha Wenrich, 1924.
Elongated, metabolic cells of highly variable
size with 3–6 flagella of equal length;
inhabit the intestinal tracts of Rana spp.
tadpoles [357].

Type species: Euglenamorpha hegneri
Wenrich, 1924.

▪ Genus Euglenopsis Klebs, 1892. Sessile cells
with four long flagella and transverse cell div-
ision, forming colonies of branched filaments
attached to the surface [398].
Type species: Euglenopsis vorax Klebs, 1892.

▪ Genus Glenoclosterium Carter, 1869. Spindle-
shaped cells with visible eyespot and at least
four longitudinally elongated chloroplasts, but
without a notable emergent flagellum [399].
Type species: Glenoclosterium varians Carter,
1869.

▪ Genus Hegneria Brumpt and Lavier, 1924.
Elongated, colourless cells with six flagella of
equal length; inhabits the intestinal tract of
tadpoles [400].
Type species: Hegneria leptodactyli Brumpt and
Lavier, 1924.

▪ Genus Klebsina Silva, 1961. Sessile, loricate
cells, inhabiting marine habitats; originally
described as Klebsiella [392], renamed by
Silva due to conflicting name with a bacterial
genus [401].
Type species: Klebsiella alligata Pascher, 1931 (=
Klebsina alligata).

▪ Genus Euglenocapsa Steinecke, 1932. Small,
oval-shaped, faintly coloured cells with mul-
tiple disc-shaped, pyrenoid-lacking
chloroplasts adjacent to the cell wall and a
single emergent flagellum of length up to
three times the length of the cell [402].
Type species: Euglenocapsa ochracea Steinecke,
1932.
Note: No representative of the incertae sedis
genera is available in culture collections.

▪ Clade Anisonemia Cavalier-Smith, 2016. The monophy-
letic group comprising predominantly flexible
(metabolic), mostly biflagellate heterotrophs (phago- and
osmotrophs), capable of skidding motility or gliding
using posterior flagellum [378].
○ Order Anisonemida Cavalier-Smith, 2016. Feeding by

phagotrophy, capable of gliding motility using pos-
terior flagellum; paraphyletic with respect to Aphagea
[8,378].
• Family Anisonemidae Kent, 1880. With the same

definition as the order.
▪ Genus Anisonema Dujardin, 1841. Weakly meta-

bolic cells with two unequal flagella (posterior
one is longer), occurs in brackish waters (plate F,
90); during mitosis, basal body duplication and
replication occurs in the late stages [403]; many
species/morphotypes distinguished [377].
Type species: Anisonema acinus Dujardin, 1841.
Not available in culture collections; 18S rRNA
sequence of the type species and single-cell tran-
scriptomes of multiple species are available.

▪ Genus Dinema Perty, 1852. Usually strongly meta-
bolic cells (with few weakly metabolic or rigid
species, e.g. Dinema inaequale) with a thick pellicle
and two unequal flagella [300] (plate F, 92); para-
phyletic with respect to Anisonema [378].
Type species: Dinema griseolum Perty, 1852. 18S
rRNA and single-cell transcriptomic data of sev-
eral species available.
Note: valid name under ICN is Dinematomonas
Silva, 1960, since the name Dinema Perty, 1852
is a synonym of Dinema Lindley, 1826 (Plantae:
Magnoliophyta).

○ Clade Aphagea Cavalier-Smith, 1993 emend. Busse
and Preisfeld, 2002. Feeding by osmotrophy, without
ingestion apparatus; monophyletic.

▪ Genus Astasia Dujardin, 1830. Cells without inges-
tion apparatus or stigma, with one emergent
flagellum and visible metaboly; paraphyletic
[170,404,405].
Type species: Astasia limpida Dujardin, 1841. Mul-
tiple non-type species available in culture
collections; 18S rRNA sequences of multiple non-
type species are available.

▪ Genus Distigma Ehrenberg, 1831. Cells without
ingestion apparatus, with two emergent flagella
and intense metaboly; some (D. proteus) possess
endobiotic bacteria; despite the name, no stigma
present [170,379,404,405]; paraphyletic.
Type species: Distigma proteus Ehrenberg, 1831.
Type species and other species available in culture
collections; 18S rRNA sequences of multiple
species, including the type species, are available.

▪ Genus Gyropaigne Skuja, 1939. Rigid cells with
prominent keels, fused pellicle and one emergent
flagellum with hairs [404]; microtubule scroll pre-
sent [404].
Type species: Gyropaigne kosmos Skuja, 1939.
G. lefevrei (non-type species) available in culture
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collection; 18S rRNA sequence of the same species
is available.
Note: this genus probably encompasses the
organism described as Helikotropis okteres [406],
as its existence as a separate entity is not sup-
ported by any distinguishing morphological
feature or molecular data [392].

▪ Genus Menoidium Perty, 1852. Rigid, flattened and
elongated cells with fused pellicle and one emer-
gent flagellum without hairs [407]; microtubule
scroll present [404] (plate F, 82).
Type species: Menoidium pellucidum Perty, 1852.
Multiple non-type species available in culture col-
lection; 18S rRNA sequences of multiple species,
including the type species, are available.

▪ Genus Parmidium Christen, 1962. Rigid cells with
deep indentations, fused pellicle and one emer-
gent flagellum without hairs [407]; microtubule
scroll present [404].
Type species: Parmidium circulare Christen, 1962.
Type species and other species available in culture
collection; 18S rRNA sequences of multiple
species, including the type species, are available.

▪ Genus Rhabdomonas Fresenius, 1858. Rigid cells
with fused pellicle and one emergent flagellum;
microtubule scroll present; a rather disputable,
paraphyletic genus with no distinct synapomor-
phy, encompassing multiple species sharing
different traits of other genera [404].
Type species: Rhabdomonas incurva Fresenius,
1858. Type species and other species available in
culture collections; 18S rRNA sequences of mul-
tiple species, including the type species, are
available.

○ Order Peranemida Cavalier-Smith, 1993. Uniflagellate or
biflagellate cells, capable of gliding motility using
anterior (or single) flagellum
Note: this clade is resolved on some trees as poly-
phyletic, encompassing four clades (themselves
monophyletic), scattered across the tree of Spirocuta
[378]. Only a recent multigene phylogeny resolves
them as a monophyletic sister clade to Euglenophyceae,
but with very weak support [8]. Regardless of the phylo-
genetic uncertainties, these organisms have been
informally referred to as ‘peranemids’ due to their
common morphological traits.

▪ Genus PeranemaDujardin, 1841. Biflagellate, highly
metabolic cells with longer and thicker anterior fla-
gellum and protruding feeding apparatus, capable
of cutting into other cells and sucking in its contents
(plate F, 89); can and will attempt to feed on any-
thing, including bacteria, yeast, microalgae, ink,
raw starch and other euglenids [408]; very rapid
response to light by rhodopsin-mediated photo-
taxis [409]; in recent phylogeny resolved as
monophyletic [378].
Type species: Peranema globulosum Dujardin, 1841.
Non-type species (P. trichophorum) available in an
educational resources repository (Carolina Biologi-
cal Supply Co.), but not in culture collections; 18S
rRNA sequence and single-cell transcriptomes
of P. trichophorum (non-type species) are available.
Note: valid name under ICN is Pseudoperanema
Christen, 1962, since Peranema Dujardin, 1841 is
synonym of Peranema D. Don 1825 (Plants:
Polypodiopsida)

▪ Genus Chasmostoma Massart, 1920. Uniflagellate,
metabolic cells with a pronounced flagellar
cavity [378,410].
Type species: Chasmostoma nieuportense Massart,
1920. Not available in culture collections; a
single-cell transcriptome of the type species is
available.

▪ Genus Jenningsia Schaeffer, 1918. Uniflagellate,
metabolic cells [410] (plate F, 88); polyphyletic,
currently comprising two separate monophyletic
clades: one (Jenningsia fusiforme) branching at the
base of Euglenophyceae, and another branching
at the base of all non-peranemid Spirocuta [378];
in a recent multigene phylogeny, still resolved as
polyphyletic, but both clades are placed within
the monophyletic Peranemida [8].
Type species: Jenningsia diatomophaga Schaeffer,
1918. Not available in culture collections; 18S
rRNA sequences and single-cell transcriptomes
of multiple non-type species strains are available.

▪ Genus Teloprocta Cavalier-Smith, 2016. Cylindrical
or spindle-shaped cells with two long flagella
(ventral and dorsal) and 28 pellicle strips; consists
of species formerly classified as Heteronema, e.g.
Teloprocta scaphurum [411].
Type species: Heteronema scaphurum Skuja, 1934
(= Teloprocta scaphurum). Not available in culture
collections; 18S rRNA sequence of the type species
available.

▪ Genus Urceolus Mereschkovsky, 1877. Highly
metabolic, sack-shaped cells with one emergent
flagellum and a flattened anterior collar
[300,378]; polyphyletic genus, with two strains
(ABLN1 and WBF1) branching separately, with
weak support, from the otherwise monophyletic
sister clade to Teloprocta [378]; resolved as mono-
phyletic in a recent multigene phylogeny;
however, the two divergent strains mentioned
above were not included in the analysis [8].
Type species: Urceolus alenizinii Mereschkovsky,
1879. Not available in culture collections; 18S
rRNA sequences and single-cell transcriptomes
of multiple non-type species strains are available.

▪ Genera unassigned to any subordinate taxa within
Spirocuta:
▪ Genus Neometanema Lee and Simpson, 2014. Bifla-

gellate, flattened cells with two equally long
flagella, visible feeding apparatus, weak metaboly
and 22 helical pellicle strips; distinguished from
Heteronema/Anisonema by skidding motility invol-
ving the use of both flagella; a taxonomic
replacement for Metanema [331,378].
Type species: Neometanema parovale Lee and Simp-
son, 2014. Not available in culture collections;
single-cell transcriptomes of multiple species,
including the type species, are available.

▪ Genus Heteronema Dujardin, 1841. Biflagellate
cells, capable of metaboly and gliding movement
using the longer and thicker anterior flagellum,
freshwater (plate F, 91).
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Type species: Heteronema marina Dujardin, 1841.
Not available in culture collections; 18S rRNA
sequences and single-cell transcriptomes of mul-
tiple non-type species strains are available.
Note: Heteronema is a highly disputable genus,
comprising species with varied morphological
features [331,411]; recent phylogeny resolves
this taxon as polyphyletic, with Heteronema globuli-
ferum branching within Peranemida, and
Heteronema vittatum (monophyletic) branching
within Anisonemida, neither of which is the type
species [378].

• Clade Alistosa Lax et al., 2020. Oval-shaped, biflagellate
cells, usually with 10–12 pellicle strips with keels; using
the longer posterior flagellum for gliding motility;
monophyletic [8,377].

▪ Genus Ploeotia Dujardin, 1841. Rigid, biflagellate
cells (posterior one trailing against the substrate)
with non-protrusible ingestion apparatus
[300,412].
Type species: Ploeotia vitrea Dujardin, 1841. Not
available in culture; 18S rRNA sequences of mul-
tiple strains and two single-cell transcriptomes,
both including the type species, are available.

▪ GenusSerpenomonasTriemer, 1986. Small, slightly flat-
tened cells with two flagella (posterior one is longer)
and a non-retractive feeding apparatus, inhabiting
salt marshes [413].
Type species: Serpenomonas costata Triemer, 1986.
Type species available in culture; 18S rRNA
sequences of multiple strains of the type species are
available.
Note: due to having a stable sister relationship, the
genera Ploeotia and Serpenomonas are often referred
to by a collective name Ploeotiidae [377,378].

▪ Genus Keelungia Chan, 2013. Biflagellate, very
small cells [414] with 10 flat pellicle strips [377].
Type species: Keelungia pulex Chan and Moestrup,
2013. Not available in culture; 18S rRNA
sequences of multiple species, including the type
species, are available.

▪ Genus Lentomonas Farmer and Triemer, 1994.
Rigid biflagellate cells with thicker and longer
posterior flagellum, and straight, longitudinal pel-
licle strips [415], out of which seven dorsal strips
are prominent, while three ventral strips are flat
[377] (plate F, 96).
Type species: Entosiphon applanatum Preisig, 1979
(= Lentomonas applanatum). Not available in cul-
ture; 18S rRNA sequences of multiple non-type
species are available.

▪ Genus Decastava Cavalier-Smith, 2016. Long
anterior flagellum and short posterior flagellum;
10 longitudinal pellicle strips [411].
Type species:Decastava edaphica Cavalier-Smith and
Vickerman, 2016. Type species available in culture;
18S rRNA sequences of multiple species, including
type species, are available.

○ Order Petalomonadida Cavalier-Smith, 1993. Unifla-
gellate or biflagellate cells, using the longer, anterior
flagellum (or the single flagellum) for gliding moti-
lity; recent phylogeny resolves Petalomonadida as
monophyletic with strong support [378].
▪ Genus Petalomonas Stein, 1859. Rigid, flattened
cells with one emergent gliding flagellum,
mostly freshwater [300].
Type species: Cyclidium abcissum Dujardin 1841 (=
Petalomonas abcissa). P. cantuscygni (non-type
species) available in culture collection; 18S rRNA
sequences and single-cell transcriptomes of mul-
tiple non-type species are available.

▪ Genus Scytomonas Stein, 1878. Possesses five pelli-
cle strips, a single flagellum and centriole, feeds
when sessile [411].
Type species: Scytomonas pusilla Stein, 1878. Sc.
saepesendens (non-type species) available in culture
collection; 18S rRNA sequence of the same species
is available.

▪ Genus Notosolenus Stokes, 1884. Rigid, flattened
cells with long anterior and short posterior flagel-
lum [300] (plate F, 94).
Type species: Solenotus apocamptus Stokes, 1884 (=
Notosolenus apocamptus). Not available in culture
collections; 18S rRNA sequences of multiple non-
type species strains and a single-cell transcriptome
of N. urceolatus (non-type species) are available.

▪ Genus Biundula Cavalier-Smith, 2016. Possesses a
single emergent flagellum, consists of four species for-
merly classified as Petalomonas, e.g. Biundula
sphagnophila, Biundula sulcata, distinguished by pelli-
cle structure (2–8 smooth undulations on dorsal and
ventral surface, continuous pellicle without sutures
between strips) [411].
Type species: Petalomonas sphagnophilaChristen, 1962
(= Biundula sphagnophila). Not available in culture col-
lections; 18S rRNA sequence of the type species
available.

▪ Genus Sphenomonas Stein, 1878. Small, rigid, bifla-
gellate cells with a large hyaline inclusion [378]
(plate F, 95); no phagotrophy observed, probably
osmotrophic [416].
Type species: Sphenomonas quadrangularis Stein,
1878. Not available in culture collections; a
single-cell transcriptome of the type species is
available.
• Genera unassigned to any subordinate taxa within
Euglenida:

▪ Genus Hemiolia Lax, Lee, Eglit and Simpson, 2019.
Oblong, moderately flattened cells with very long
(over three times cell length) posterior flagellum,
hardly notable pellicle strips and feeding apparatus
not visible in light microscopy; consists of only one
species (H. trepidum), formerly classified as Aniso-
nema [377].
Type species: Anisonema trepidum J. Larsen, 1987 (=
Hemiolia trepidum). Not available in culture; 18S
rRNA sequences of multiple strains of the type
species are available.

▪ Genus Liburna Lax, Lee, Eglit and Simpson, 2019.
Rigid, oblong cells with very long (about three
times cell length), hooked posterior flagellum,
hardly noticeable pellicle strips and feeding appar-
atus not visible in light microscopy; consists of only
one species (L. glaciale), formerly classified asAniso-
nema [377].
Type species: Anisonema glaciale Larsen and
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Patterson, 1990 (= Liburna glaciale). Not available in
culture; 18S rRNA sequences of multiple strains of
the type species and two single-cell transcriptomic
datasets are available.
▪ Genus Entosiphon Stein, 1878. Cells with protru-
sible ingestion apparatus and 12 pellicle
strips [377].
Type species: Anisonema sulcatum Dujardin,
1841 (= Entosiphon sulcatum). Two species,
including the type species, available in culture;
18S rRNA sequences of multiple species,
including the type species, are avaiable.
Note: the position of this genus is neither
strongly supported nor stable, as depending
on methods and datasets used for phylogeny,
it may either branch off together with Hemiolia
and Liburna, or form a separate branch in
various positions among ‘rigid’ euglenids (i.e.
Euglenida excluding Olkaspira). Therefore,
despite the abundance of molecular data,
Entosiphon cannot be classified as a member of
any major group within Euglenida, and
should be regarded as orphan genus among
phagotrophic euglenids [8,377,378].

• Euglenida incertae sedis—15 genera with unresolved pos-
ition due to lack of molecular data, and therefore
questionable status, are:

▪ Genus Atraktomonas Christen, 1962. Possesses a
single emergent flagellum, closely related toPeta-
lomonas [331,417].
Type species: Atraktomonas laevis Christen, 1962.

▪ Genus Calycimonas Christen, 1959. Non-meta-
bolic cells, possesses a single emergent
flagellum [417,418].
Type species: Calycimonas physaloides Christen,
1959.

▪ Genus Dolium Larsen and Patterson, 1990.
Rigid, sessile cells with one emergent flagellum
[300]; generic name shared with an animal
genus—Dolium Lamarck, 1801 (Mollusca:
Gastropoda).
Type species: Dolium sedentarium Larsen and
Patterson, 1990.

▪ Genus Dylakosoma Skuja, 1964. Distinguished
from Petalomonas due to the presence of epibio-
tic bacteria [419].
Type species: Dylakosoma pelophilum Skuja, 1964.

▪ Genus Peranemopsis Lackey, 1940. Uniflagellate,
metabolic, wedge-shaped cells, with only one
rod in the feeding apparatus and no eye-
spot [183].
Type species: Peranemopsis striata Lackey, 1940.

▪ Genus Tropidoscyphus Stein, 1878. Slightly plas-
tic cells with eight strips and two unequal
flagella, but both are described as anterior [420].
Type species: Tropidoscyphus octocostatus Stein,
1878.

▪ GenusMichajlowastasia Krell and Shabalin, 2008.
Organisms with two-stage life cycle: a free-
living reproductive phase, and a parasitic feed-
ing phase, taking place in the intestines or other
body cavities of copepods and ending with for-
mation of cyst-like structures. In free-living
stage, cells are indistinguishable from genus
Astasia; in parasitic stage, cells lose the emer-
gent flagellum, become larger in size and
enriched with paramylon grains [356].
Type species: Astasia cyclopis Michajłow, 1956
(= Michajlowastasia cyclopis).
Note: this genus had been originally described
by Michajłow under the name Parastasia in
order to distinguish the assemblage of parasitic
forms from the exclusively free-living Astasia
spp. That name, however, was recognized as
invalid due to its homonymity with an earlier
described beetle genus Parastasia Westwood,
1841 (Coleoptera: Scarabaeidae), and sub-
sequently renamed by Krell & Shabalin
[356,421].

▪ Genus Parastasiella Michajłow, 1965. Organisms
with two-stage life cycle, similar toMichajlowasta-
sia, but the parasitic stage involves copepod eggs
and larvae (nauplii) as hosts instead of adults.
Cells are among the smallest of all known eugle-
nids, reaching a maximum length of 5 μm, and
form heterogenous paramylon grains of different
size [356].
Type species: Astasiella velox Michajłow, 1965 (=
Parastasiella velox).

▪ Genus Dinemula Michajłow, 1965. Organisms
with two-stage life cycle (see Parastasiella). Spin-
dle-shape cells with two unequal flagella; the
anterior flagellum is the longer one and is
formed earlier (during parasitic stage), while the
posterior one is formed during the free-living
stage [356].
Type species: Dinemula celerMichajłow, 1965.

▪ Genus Paradinemula Monchenko, 1967. Organ-
isms with two-stage life cycle (see Parastasiella).
Morphologically similar to Dinemula, but more
oval-shaped, with longer anterior flagellum, a
stiff, laterally protruding flagellum turned to the
back, and a large translucent nucleus [356].
Type species: Paradinemula polonica Monchenko,
1967.

▪ Genus Mononema Michajłow, 1967. Organisms
with two-stage life cycle (see Parastasiella). Simi-
lar to Paradinemula, but with a single emergent
flagellum, protruding from a swelling in the
anterior part of the cell and directed towards
the back of the cell [356].
Type species: Mononema reptans Michajłow,
1967.

▪ Genus Ovicola Michajłow, 1965. Organisms with
two-stage life cycle, similar to Parastasiella, but
reproductionoccurs inparasitic stagewithin cope-
pod eggs, with the free-living stage’s role limited
only to invasion of new hosts. Egg-shaped, unifla-
gellate cells with a thick, arched flagellum which
makes rowing movements only with its distal
part. In free-living stage, each cell contains only
one large paramylon grain [356].
Type species: Ovicola abyssinicusMichajłow, 1965.

▪ Genus Naupliicola Michajłow, 1965. Organisms
with two-stage life cycle, similar to Ovicola,
but reproduction occurs in body cavities of
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copepod nauplii instead of eggs. Morphologi-
cally similar to Ovicola, but with multiple
paramylon grains in free-living stage [356].
Type species: Naupliicola necans Michajłow,
1965.

▪ Genus Embryocola Michajłow, 1969. Organisms
with two-stage life cycle, similar to Naupliicola.
Morphologicallysimilar toNaupliicola, butdevel-
ops specifically inside the eyes of copepod
nauplii in the parasitic stage of its life cycle [356].
Type species: Embryocola ocelli Michajłow, 1969.

▪ Genus Copromonas Dobell, 1908. Rigid, pyriform,
colourless cells with one long emergent flagellum
and clearly visible cytopharynx, feeding by
phagotrophy; isolated from intestines of frogs
(Rana temporaria) and toads (Bufo vulgaris);
described as resembling Petalomonas and Scytomo-
nas, but also observed to conjugate, which makes
its affiliation to Euglenida disputable [422].
Type species: Copromonas subtilis Dobell, 1908.
Note: no representative of the incertae sedis genera
is available in culture collections.

Class Symbiontida Yubuki, Edgcomb, Bernhard and Leander,
2009.

This group has two shared synapomorphies: a thick
mantle of rod-shaped epibiotic bacteria covering almost the
entire cell, and a layer of mitochondria-derived organelles
with reduced or absent cristae located beneath the cell mem-
brane. Despite superficially similar morphology (with the
exception of the pellicle strips), their relationship with eugle-
nids has not been fully resolved. Most commonly found in
hypoxic zones of marine habitats.
▪ GenusBihospitesBreglia,Yubuki,Hoppenrath and
Leander, 2010. Cells with a rudimentary pellicle,
robust feeding rod and two morphotypes of epi-
biotic bacteria (large, rod-shaped ones arranged
in longitudinal bands and small, spherical ones
with extrusive apparatuses) [329,423].
Type species: Bihospites bacati Breglia, Yubuki,
Hoppenrath and Leander, 2016. Not available in
culture; 18S rRNA sequence of the type species
available.

▪ Genus Calkinsia Lackey, 1960. Cells with
reduced feeding rod and without pellicle, but
with elaborate extracellular matrix, orange in
colour; only rod-shaped epibiotic bacteria pre-
sent [423,424].
Type species: Calkinsia aureus Lackey, 1960
(plate F, 97). Not available in culture; 18S
rRNA sequence of the type species available.

▪ GenusPostgaardi Fenschel, Bernard, Esteban, Fin-
dlay, Hansen and Iversen, 1995. Cells with
complex feeding apparatus with an oval-shaped
gutter, covered by the anterior lip overlapping a
reinforced ridge, but with less developed extra-
cellular matrix [423,425]; phylogenetic position
unresolved due to lack of molecular data.
Type species: Postgaardi mariagerensis Fenschel,
Bernard, Esteban, Findlay, Hansen and Iversen,
1995. Not available in culture; no sequence data
available.
5. Viruses in Euglenozoa
Viruses are the most abundant and widespread life form on
our planet. During several billion years of coevolution,
viruses have developed specific mechanisms allowing them
to infect virtually any cellular organism [426]. It was esti-
mated that viruses lyse about 20% of oceanic protists daily
and, thus, play a major role in regulating the Earth’s biogeo-
chemical cycle [427]. Euglenozoa are no exception to this rule,
although viral diversity was thoroughly investigated only in
kinetoplastids [428]. The reason for such discrepancy is
obvious—this is by far the best-studied group, which
includes several parasites of medical or economic importance
[10]. There is no doubt that representatives of Euglenida,
Diplonemea and Symbiontida can be infected by viruses,
but this has not been verified experimentally.

Kinetoplastids possess DNA and RNA viruses. The only
documented case of a DNA virus is the one infecting free-
living Bodo saltans [429]. This Bodo saltans virus belongs to
the family Mimiviridae and its genome of about 1.39 Mb is
among the largest described genomes of giant viruses. The
functional role this virus may play in the biology of bodonids
remains to be elucidated, but the plethora of acquired adap-
tation traits (such as the mechanism to facilitate membrane
fusion, interference competition, contracted translation
machinery and inflated genome with numerous genome
rearrangements) makes this virus an interesting model for
future studies. Also of note is that the abundance of such
nucleo-cytoplasmic large DNA viruses was estimated at
104–105 genomes ml−1 in the photic zone and 102–103

genomes ml−1 of water in the oxygen minimum zone of the
World Ocean [430].

The situation with RNAviruses is more complex. Here, we
will only discuss viruseswith known genetic structure andwill
not cover older reports of the mere presence of virus-like par-
ticles (reviewed by Grybchuk et al. [428]). The best-studied
cases are of Leishmania RNA viruses (Leishmaniavirus spp.,
LRVs of the family Totiviridae). Discovered in the late 1980s in
representatives of the Leishmania subgenus Viannia [431], the
very first Leishmaniavirus LRV1 was sequenced in the early
1990s [432], and its biological role was uncovered about 20
years later [433]. Its presence is linked to the increased meta-
static potential, parasite burden, immune response in mouse
models of leishmaniasis and frequent treatment failures
[434,435]. Notably, Old World leishmanias L. (Leishmania) pos-
sess a phylogenetically related Leishmaniavirus, LRV2, which is
widespread in isolates of L. major [436,437], but its role in the
disease progression is unknown. The phylogenies of viruses
and their respective hosts are mainly congruent, suggesting
long-term coevolution [438]. In addition to Leishmania, repre-
sentatives of Leishmaniavirus LRV3 and LRV4 have been
documented in another groupof trypanosomatids,Blechomonas
spp. [439]. These viruses have probably been acquired from
Leishmania during co-infections.

Themost successful groupof viruses infecting trypanosoma-
tids are bunyaviruses (LBVs, proposed family Leishbunyaviridae).
They infect multiple Crithidia and Leptomonas spp. [440,441],
Leishmania (Mundinia) martiniquensis [442], and at least one iso-
late of Phytomonas sp. [441]. The wide distribution of these
viruses can be explained by their encapsulated structure,
which promotes easy dispersion in co-infections.

Narnaviruses (family Narnaviridae) were detected in
Leptomonas seymouri and Phytomonas serpens [95,441,443].
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The viral load in L. seymouri is extremely high, indicating that
this virus may enhance Leishmania virulence in the case of
Leishmania donovani–Leptomonas seymouri co-infections [444].
Other viruses are less widespread and, in many instances,
appear to be restricted to a particular trypanosomatid host,
as can be exemplified by Tombus-like viruses and Ostravirus
in Leptomonas pyrrhocoris [441].
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6. Endo- and ectosymbioses in Euglenozoa
6.1. Kinetoplastid endosymbionts
Reports on endosymbionts in kinetoplastids are rare, but a few
cases have been described in detail. Endosymbiosis between a
bacterium and a trypanosomatid host occurred independently
at least twice in the evolutionary history of trypanosomatids,
in which neither hosts nor bacteria are closely related. The
members of subfamily Strigomonadinae engaged in endo-
symbiotic relationship with Ca. Kinetoplastibacterium spp.,
representatives of Alcaligenaceae family (Burkholderiales;
β-proteobacteria). Three genera of Strigomonadinae—
Angomonas, Strigomonas and Kentomonas—are considered to
share an endosymbiont-bearing ancestor, in which the reduc-
tive evolution of the endosymbiont genome occurred prior
to the radiation of the host genera [274,445]. Each member
of Strigomonadinae carries a different Kinetoplastibacterium
species, which co-evolved together with its host [285].
Another trypanosomatid, Novymonas esmeraldas (most closely
related to Leishmania), established endosymbiosis with
Ca. Pandoraea novymonadis, representing another family
(Burkholderiaceae) of Burkholderiales [275].

The presence of endosymbionts in all these cases likely
compensates for the inability of their hosts to synthesize cer-
tain metabolites, such as haem, nucleotides, and several
amino acids and vitamins, which are provided by the bacteria
[275,285,445]. Both P. novymonadis and Kinetoplastibacterium
spp. feature genomes, which are strongly reduced compared
to related free-living β-proteobacteria, nevertheless preser-
ving genes necessary for nutritional provisioning of their
hosts [195]. Both endosymbiotic associations are permanent
with bacteria being transmitted vertically; however, the
association between Kinetoplastibacterium and Strigomonadi-
nae is considered more ancient than that of N. esmeraldas
and P. novymonadis [89,195]. The latter partnership is charac-
terized by the lack of stringent control over the number
of bacteria, less extensive genome reduction, higher GC con-
tent, and the presence of TCA and amino acid synthesis
pathways [89].

Outside of these two systems, the presence of endosymbiotic
bacteria was reported from a free-living freshwater kinetoplastid
Bodo curvifilus [446], while the recently studied endosymbionts of
Bodo saltans have been assigned to Paracaedibacter, with possible
role in defensive endosymbiosis [447]. Finally, the trypanosoma-
tid Phytomonas borealis isolated from the midgut of spiked
shieldbugs also harbours endosymbionts [448], although their
taxonomic identity and function remain unknown.

6.2. Diplonemid endosymbionts
Diplonemids are known for establishing symbiosis with
members of Holosporaceae and Rickettsiaceae families,
which are exclusively parasitic/endosymbiotic lineages of
α-proteobacteria [449]. At present, there are only two reports
on endosymbionts in diplonemids: Holosporaceae bacteria
inside two Diplonema species [450], and a hemistasiid Namys-
tinia karyoxenos with a Rickettsiaceae endosymbiont [325].
While D. aggregatum and N. karyoxenos contain a single endo-
symbiont, D. japonicum harbours two species of bacteria from
closely related genera, the genomes of which have been
sequenced, assembled and analysed [451]. They are severely
reduced with similar gene content retained, and lack all
energy metabolism pathways, including glycolysis, pentose-
P pathway, the TCA cycle and oxidative phosphorylation.
Although complete synthesis pathways for amino acids or
vitamins are absent, the nutritional role of the endosymbionts
cannot be ruled out due to the large number of proteins with-
out known functions. A large portion of their highly reduced
genomes is dedicated to secreted proteins that are possibly
involved in manipulation of the host metabolism. Similar to
Holosporaceae and Rickettsiaceae in other protist hosts, the
role of the diplonemid endosymbionts is not clear. However,
it was hypothesized that due to the presence of various
secretion/toxin systems, the endosymbionts might take part
in Defence against bacterial pathogens [451].

6.3. Symbiontid symbionts
As suggested by their very name, the distinctive trait of the
Symbiontida is their capability of forming permanent, prob-
ably obligatory symbiotic relationships [7,41]. Thus far,
three distinctive kinds of epibiotic bacteria have been
described to thrive on the surface of symbiontid cells: rod-
shaped, sulfide-oxidizing ε-proteobacteria associated with
symbiontid genera Calkinsia and Bihospites [41], extrusive
apparatus-bearing cocci with strong resemblance to hypo-
trich ciliate-associated Verrucomicrobia, endemic to the
genus Bihospites [329], and magnetotactic Deltaproteobac-
teria, associated with multiple unclassified environmental
strains of symbiontids [452].

Although the role of magnetosome-bearing, but non-
motile δ-proteobacterial symbionts is clearly to provide their
hosts with magnetotaxis [452], the functions of other micro-
organisms in their relationships with symbiontids seem
to be more complex. It has been suggested that the
ε-proteobacterial symbionts detoxify the local surroundings
to limit the inhibitory effect of sulfide on the cellular respir-
ation of the symbiontids [41], while the Verrucomicrobia-
like bacteria provide their hosts with a Defence mechanism
against predators [329]. Additionally, the epibiotic bacteria
can be used by their hosts as an auxiliary food source
[329,452]. In exchange, the eukaryotic hosts’ role is to provide
their epibionts with various metabolites, such as hydrogen, as
all symbiontids possess hydrogenosomes [7], and to serve
as efficient means of transport along the oxycline in the
deep-sea environment [41]. It remains uncertain, however,
whether the metabolic coupling between the symbiontids
and ε-proteobacteria is limited to the outward hydrogen
flux, and, perhaps more importantly, if any metabolic
exchange occurs between the Verrucomicrobia-like bacteria
and their symbiontid hosts.

6.4. Euglenid symbionts
Curiously, the observable affinity of the symbiontids towards
prokaryotic partners is, to some extent, shared by their
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postulated close relatives—the euglenids. In their case,
the tight relationships with bacteria are not as widespread,
as a majority of the described euglenid genera have
never been observed to harbour any symbionts, but the
diversity of these relationships may be substantially greater
[397]. Unfortunately, our knowledge of the euglenid–
bacteria associations remains superficial due to the fact that
they have mostly been reported in the pre-genomics and
transcriptomics era [419,453,454]. Nonetheless, it is undeni-
able that these relationships are widespread, as they involve
both phagotrophic (genera Petalomonas and Dylakosoma;
[419,455]) and photosynthetic euglenids (genera Euglena,
Phacus, Lepocinclis and others; [454]), and of rather diverse
nature, as euglenids have been observe to harbour bacteria
within their cells [389,454], on their surface [419,456],
or even both [397]. What is more, a single heterotrophic
euglenid species (Anisonema platysomum) has been observed
to harbour magnetosomes. It remains unclear whether this
typically prokaryotic trait has been acquired by Anisonema
from magnetotactic bacteria (similar to those associated
with symbiontids), or evolved independently [457].

As indicated by the so far most elaborate studies of
euglenid–bacteria associations, involving a phagotrophic
euglenid Petalomonas sphagnophila and a strain of photosyn-
thetic Eutreptiella sp., it is evident that euglenids are capable
of harbouring multiple distinct bacterial symbionts simul-
taneously [397,455]. Petalomonas sphagnophila from Canadian
peatlands has been observed to carry six different bacteria
within its cells, namely two strains of Rickettsiales, one
representative of Firmicutes, one γ-proteobacterium, one
δ-proteobacterium and one enigmatic, pigmented prokaryote
with unidentified affiliation [455]. Moreover, Eutreptiella
from the Long Island Sound possesses epibionts classified
as Roseovarius, Oceanicaulis (Alphaproteobacteria) and
Marinobacter (Gammaproteobacteria), as well as an endobiotic
representative of Rickettsiales, though phylogenetically distant
from those associated with P. sphagnophila [397]. Unfortunately,
except for the hypothesis that the epibiotic bacteria of Eutrep-
tiella supply their host with vitamin B12, well supported by
cultivation experiments and transcriptomic data, very little is
known about the nature and purpose of the relationships
between bacteria and the two aforementioned euglenid hosts
[397,455]. In fact, it is uncertain whether these associations
are symbiotic at all, especially considering that Rickettsiales
are common intracellular parasites of a vast variety of
eukaryotes [458].
Note added in proof
After the acceptance of this paper for publication, a taxo-
nomic description of two new kinetoplastid flagellates,
marine Papus ankaliazontas and freshwater Apiculatamorpha
spiralis, has been published [459]. These new taxa represent
free-living representatives of the order Prokinetoplastida.
The available 18S rRNA gene-based phylogeny does not
allow estimating reliably the relationships of these flagellates
with the previously characterized genera Perkinsela and
Ichthyobodo due to low statistical supports [459]. Moreover,
the inferred position of these new taxa contradicts with the
well-supported topology of the recently published phyloge-
nomic tree, which, however, does not include Ichthyobodo
[30]. Thus, it is currently premature to classify the two new
genera and they are considered as Prokinetoplastida incertae
sedis. Below is a short characterization of these forms.

P. ankaliazontas: free-living, solitary, eukaryvorous; two
unattached flagella, the anterior one with thin undulate mas-
tigonemes; flagellar pocket connected to oblique groove;
pronounced rostrum with apical cytostome, tubular cyto-
pharynx supported by prismatic microtubular rod;
trichocysts at the anterior end.

A. spiralis: free-living, solitary, eukaryvorous; two unat-
tached flagella the anterior one with fine fiber layer; cell
surface with spherical and lamellate scales; pronounced ros-
trum with apical cytostome, tubular cytopharynx supported
by prismatic microtubular rod; trichocysts at the anterior end.
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